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ABSTRACT 

The purpose of t h i s  contract was to determine the effect of the synthesis 

approach (single or multirate) on the machine requirements for a digital 

control system for the space shuttle boost vehicle. The study encompassed 

four major work areas: synthesis approach trades, machine requirements 

trades, design analysis requirements and multirate adaptive control techniques. 

The primary resui ts of this study are two mu1 tirate autopilot designs for the 

low Q and maximum Q flight conditions that exhibits equal or better performance 

than the analog and single rate system designs, Also, a preferred technique 

for analyzing 2nd synthesizing multirate digital control systems is  specified. 
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1.0 INTRODUCTION 

Single rate digital autopilot designs have been plagued by the divergent require- 

ments of m p l  ing at a high rate to prevent folding unwanted signals into the band- 

width of the control system A i l e  also trying to keep the sampling rate at a mini- 

mum to avoid finite accuracy arithmetic problems. The solution to this problem is 

to go to a multimte design where the sampling rates for the various computations can 

be specified in a more consistent manner. For example, cascade mu1 rirate fil ten can 

be defined with a fort update rate front end to circumvent the folding ~robleln and 

to allow optimal performance of the high frequency filter requirements. The low 

frsquency back end filter can be defined to alleviate arithmetic problems while 

meeting the low frequency filter requirements. Similarly, mu1 tiloop mu1 tirate de- 

signs can be used to meet difkrent sampling rate requirements in difkrent loops. 

1 -1 Study Approach 

This study was performed to determine multirate analysis techniques and to study the 

effect of the system synthesis approach (single or mu1 tirate) on the machine require- 

ments for a space shuttle type boost vehicle at low Q and maximum Q flight con- 

ditions. The applicability of adoptive control techniques to space shuttle was also 

. investigated , 

The study activities car( be grouped into the following major work areas: 

Synthesis Approach Tmdes 

Machine bquirement Trades 

Design Analysis Requirements 

Muitirate Adaptive Control Techniques 

This report i s  divided into sections covr ring these four tasks. A summary of the 

molar study activities is  given below, 

The Synthesis Approoch Tracks task is involved with appfying synchronous and multi- 

rate sampled data analysis and realization techniques to two fixed point in time 
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linearized models of the and control system furnished by NASA-JSC. First. i 
' \*-' 

the models were verified on the k i n g  analysis program MDELTA and then the 

analog control system was digitized using Tustin's bilinear transbrmation with fie- 3 C: 
qwncy prewarping. Next, a digital control system war designed stating with a I 

z-transtormed model of the plant. Lastly, a multirate control syshm was designed. ( .. . 
Comparisons were made between the gain and phase margin characteristics for the 

different designs. Hybrid simulations of the systems wem implemented and the % ,-. - 
analysis results were verified using these simulations. 

The objective of the Machine Requirements Trades task was to determine the effect 

of the synthesis approach on the machin. requirements. The primary machine n- 

quiremnts and the efkct  of s m p l  ing rate on these requirements are reviewed. The 

mtkhine requirements for a synchronous implementation versus a mu1 t irak im~lemen- 

tat ion are discussed. 

The h r i g n  Analysis task involved studying techniques for onalyring multimte sampled 

data systems. , The primary existing techniques are reviewed and the state variable 

qprwch  is discussed in detail. This latter approach was used to perform the analy- 

sis work in Task I .  

A litcrah re search and study of various parameter adaptive control schemes were 

conducted. Extensions to these technques to mclke them applicable to a shuttle 

type appl ication are out1 ined. The pseudo adaptive autopilot used on the SRAM 

missile is discussed. Two possible digi tal implementations for these adaptive control 
1 

systems are discussed. 

1.2 Study Results 

The contract findings are summarized in the following paragraphs: 

Synthesis Approach Trades - Single rate and multirate yaw plane autopilots were 

&signed fbr the two fixed point in time ~ I a n t  models. For the low Q system the 

single rate and rnultirate designs gave mar identical performance when judged in 

knns of frequency response characteristics although the multirate design exhibited 

J ightly better phase stabil izaiion of h e  first bending mode,. From a fruquency 

2 



mponse standpoint, the max Q multirate design gave much better gain stabil izatlon 

of the body bonding modes than the single rate system. The hybrid simulatlon re- 

sulk w r i M  the analpis predictions in al l  cases consik!ered. A multirate design 

* methodolqy war developed and f out1 ined belowt 

1, Continuous root locus 

2. 2- lane root locus and fiequa ncy mspome at  sarnpl ing raks 

of interest 

3, Determination of high update rate and low update rate filter 

requitemants 

4, Multirate frequency response and root locus 

5. Fine tuning multirate design based upon (4). 

Machine hquirernents Trades - The effect of the single rate and muitirate designs 

resulting tram Task 1 on 'ie machine requirements was negl igible from a computer 

wordlength standpdint. This is  due to the fact that the allowable range 

in variation of the sampling period was restricted to a positive interger times T = .04 

tec. which is the basic frame time for the Space Shuttle GQC computer. I t  was 

determined from both folding and stability standpoints that the lowest acceptable 

sampling rate had a period of T = .08 seconds. The frame time of .04 KC. was 

slow enough to begin with to preclude any finite accuracy arithmetic problems for 
! 
1 

the filters considered for th b system. The multirate design did free up computer 

tima owr  the T = .04 single rate designs as not all the computations needed to be 

performed every cycle. Also, the max Q multirate design .-{JS a simpler design to 

implement because it was possible to replace a first order filter by a sample and 

hold element. The hybrid computer wordlength studies verified 'he aforementioned ! 
I 

conclusions as they showed that all filten could be implemented on a 16 bi t  computer. 1 
Design Analysis Requirements - The two primary techniques that were studied for 

oo.,iyring multimts systems worn the switch decomposition method of  Kranc [ I  11 

ard the stute transition approach of Kalman and Berfrarn 131. The switch decompo- 

sition technique b shwn to pmwnt severe computer implementation problems in the 

m a  of w p a a t i g  the branch variables kom the loop equations. The state variable 
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approach is demonstrated to be stra ight fmrd to apply to a wide clan of sampled 

data system and to be easily implemented on a digital computer. The stab transition 

mthod i s  therefore recommended for analyzing rnultirab systems and a prekrred 

method of defining the state transition matrices is specified. 

t 
Muitirate Adaptive Control Techniques - TCe parameter adaptive control algorithm o f  

Lion I221 is shown to o fk r  the best chance for doing online adaptive control based i 
upon identifying the vehicle characteristics. Pseudo-adaptive control techniques as 

used on the! Boeing SRAM are also outlined and look as if they would offer Irr-s 

technical risk than a full adaptive system. 



2.0 : . NTHESIS APPROACH TRADES 

The purpose of t h i s  section i s  to outline a methodology for designing multirate 

compensation for sample data control systems. To -.eet this goal, the section i s  

broken into seven subsections. Subsection 2.1 presents tw:, analog plant models 

which a n  use~d as examples in  developing the design methodology. Subsection 2.2 

addresses how different sompl ing rates c.. r afkc t  the control system performance. In 

Subsection 2.3 synchronous compensation is formed by applying Tustin's method with 

frequency scale pre-warping to the analog compensation in the two plant models. 

Subsection 2.4 presents a single rate digital design for one of the plant models where 

the analog compensation has been removed and replaced with a sampler and zero-order 

hold. Subsection 2.5 presents a multirate design for both plant models. In Subsection 

2.6 the results of a simulation whlch verify the multirak designs are presecied. Sub- 

section 2.7 summarizes Section 2.0 with a general outline on the methodology tc use 

in designing rnbl tirote systems. 

2.1 Continuous Plant Gain and Phase Margins 

The block diagrams of the two plant models used in developing the digital filters are 

shown in Figures 2.1,1 and 2.1.2. Both systems model the yaw dynamic of the space 

shuttle. The first system i s  for the l i f t  off or low Q flight conditions. The second 

sntem is for the m w  Q flight conditions. In each ccie the design criterion is the 

wrne. The digital compensation i s  to replace the analog compensat ion while meeting 

the following constraints: 

1) The rigid mode gain and phase morqins are to duplicate those of rl.9 

continuous system. 

2) The f io t  body bending mode is  to be phase stabilized. 

3) The higher body bending modes are to be gain stabil ized. 

The Nichol's chart for each of these systems where the loop hos been opemd at K i s  

shown in Figures 2.1.3 and 2.1.4. 
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Figure 2.1.3: Continuous System Nichols Chart for Lift O f f  Flight Condition 

Gain Margin = 8.82 db @ 5.29 d / s c  
Phase Margin = 32' 

1st Body Bending Mod. at 11.91 d s e c  
2nd Body Bending Mod. at 23.74 md/uc 
3rd Body Bending Mode at 24.79 md/sec 
4th Body Bending Mode at 49.67 md/sec 
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2.2 Sctmpl ing Rate Requirements 

The choice of the wrnpl ing Frequency i s  of  prime importance when converting an 
i 

analog system to a sampled data s)nkm. If analog break frequencies in  the con- 

Us the poles tiinua. system are greater than half the sampling frequency, 7 , 
1 

corresponding to these frequencies will fold into the primary strip, If a pair of poles I 

fold near the a = 0 region i t  can adverse1 y affect the rigid mode dynm ics . 
Choosing a larger sampling rate allevbtes t h i s  problem, but too large a rate can I 

cause the system to be driven by truncation errors. A hcrppy median needs to be 

selected in d e r  to avoid these problems. In Section 2.0 the sampl ing rates of I 

T = 0.04 seconds and T = 0.08 seconds are used for the synchronous and mu1 tirate 

designs. In Section 3.0 the problem of  choosinga propersampling rate is  treated in 

greater detail . 
2.3 Digitized Continuous Autopilot 

Low Q S y,-em 

The continuous autopilot Gc(s) = (")* can readily be digitized using Turtin'r 
(S + l0)2 2 2 - 1  

method with frequency scale pre-warping. This involves replacing S with f 7 7 -  
2 { @ A T )  and the amlog break frequency withTta -- . 

In order ,u reduce coefficient sensitivity problems Gc(s) i s  implemented as two 

cascaded first order filters. The general result for one of the cascaded first order 

filters is as follows: 

tan (-*) tan (4,) z - 1 
D.(Z, + 

I + tan (*) I + tan (q-) 
@nT 

I +  - *n (7-)-I z -1 

+an ($1 +I  

10 
D 180-1 8438-1 

03 6aJP 2 . 4 3  O F - I G  a r 7 1  

., . - , c - 



where = analog filter break frequency A 

T =: sampling rote 

ST 
z = e  . 

With sanpling periods o f  T = .04 and .08 seconds and an omlql break kequency of 

= 10 md/&c. this equation becomes 
A 

The corresponding digital representations for G (s) = "27 18.9 also follow by applying s 
Tmtin's method. 

They are 

and 

In order lo complete the digital design a digital filter i s  added to compensate for 

the p h w  and gain introduced by tte zero order hold. The compensation used in t h i s  

&sign is the simple lead-lag filter given below. Placing the pole and zero on the 



negative real oxis ins ide the unit circle allows good nro-order hold compensation 4 
0 

lor. ma1 1 fkquencks (w C $) and gain attenuation from the zem-order hold for 
Q, 

Us ) . The corresponding Nichols charts for the large huenc ier  ( -f l a  ( 

law Q system with T = 0.08 and 0.04 seconds a n  shown in Figures 2.3.1 and 2.3.2. 
. 

In this section the e fkch  of digitizing the analog compensation b r  h e  max Q model 

are discussed. For s m p l  ing intervals of T = 0.04 and T 0.08 seconds h e  digital 

filters for the continuous autopilot Gc(S) ~0.6 - and the cornpernation in i 3  . S.+ k 17.5 
the acceleration feedback loop -Ga(S) = 

[ S  + 17.5 
j are as ~OIIOWS: 

Tustin'r [ ~ ~ b ) ]  = 0.6 0.161379(z + 1) 
Frequency 1.161379: - 0.838021 I" 

~Tustin's 
Frequency' 0.020003(z + 1 )  

 re-warping I 
z Tustin's 

Frequency 
0.365028 (2 + 1 ) 

Pre-Warping [ S S ]  = [ 1.365028~ - 0.634972 1 
~Tustin's 

= 0.6 [ 0.3313,(z + I) 
Frequency - 1.3313892 - 0.56861 1 
Pre-Warping 

T 
~Tustin's [&I*= [ ' 0,@40021(z + 1) 

. Frequency 1.04002 1 z - 0.959979 
 re-warping • I 
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Figure 2.3.1: Digitized Continuous System Nichols Chart for Lift Off Conditions. 

T = 0.08 Seconds 

Gain Margin = 9.34 db @ 5.10 &/YC 

Phase Margin = 32.S0 

' + OJ used to compemate ZOH efksb at frequencies below uJ4 l o 3 8 4 6  i+o;oB- 
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~ i ~ u r s  2.3.2 Digitized Continuous System Nichols Chart for Lift Off Conditions. 

T = 0.04 Seconds 
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The Nichol's charts for the max Q system with just the analog autopilots digitized are 

shown in Figures 2.3.3 and 2.3.4. Both frequency responses closely resemble the fre- 

qwncy response of  the continuous system shown in Figure 2.1.4. 

The effects of incfuding the digital compensation in the accelerometer feedback loop 

are shown in Figures 2,3.5 through 2.3.10. Figures 2.3.5 and 2.3.6 show the fre- 

qwncy response o f  the rnax Q system with one of the lag filters of  Ga(s) digitized. 
Tustin's 

The Nichol's chart of the system with 
Frsquencv [,&I is shown in Figure 2.3.5 

f uztin's 
and the h u e n c y  response with Frquency is Yi,je5] is siiown in iigure 2.3.6. 

Re-Warping 

In Figures 2.3.7 and 2.3.8 both lag filters jn the acceleration compensotion am 

digitized, The compensation for the zero-order hold is given below and i s  the some 

lead-lag filter used with the lift-off f l ight model. 

Digituing the compensation in the acceleration feedback loop illustrates an important 

point which should be kept in mind when using Tustin's method to synthesize digital 

first order lag filters. I f  the object i s  to design compensation for a sample data sys- 

tem, using Tustin's method with frequency pre-warping is the sane as designing in the 

w-plane . If Tus tin's method with frequency pre-warp ing is  used to dig i t  ize analog 

compensation, however, the resulting digital f i l  k r  k used to approx imak the analog 

filter's frequency response. Usually this is  a good opproxirnation. As shown in 

Figures 2.3.3 through 2.3.6 the rigid mode gain and phase margin for the partially 

digitized max Q syrtern difftrs slightly from the phase and gain margins of the con- 

tinuous system. When al l  of the analog compensation i s  digitized, however, the 

approximation begins to break down. For T = 0.04 seconds the gain margin drops from 

9.14 db to 6.12 db and the phase margin from 51.16' to 42.69'. In addition,the loop 

at 8 rodions/sec. present in Figures 2.3.3 through 2.3,6 i s  missing in Figures 2.3.7 

and 2.3.8. This results from a pair of complex zeros located imi& the unit circle 

near 8 mdians/sec . mwlng outside the unit circle when all of  the analog compensotion 
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N i c h o l s  C h a r t  for  M a x  Q System w i t h '  Cont inupu  s ~ u t o ~ i l o t  
D i g i t i z e d  using Tust in 's  Frequency Pro-Warping M e t h o d ,  T = 0 .04  C 
Gain M a r g i n  = 8.73 db @ 3.74 rad/soc 

phase M a r g i n  = 50-24' 

z + 0  3 1.3846 - uwd for ZOH Compensation 
t + 0.8 



- F i ~ n  2.3.4: Nichol's Chon for Max Q Sytem with Continuous 

t using Tustin's Frequency Pre-Warping Method, T = 0.08 

Gain Morgin = 8.45 db @ 3.69 rad/rec 

f Phase Margin = 50' 

z +0.3 1.3846 - used for ZCM Compensation 
z + 0.8 

Autopilot 
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Figurn 2.3.5: Nichol's Chart for Max Q System with Continuaus Autopitot 
r . ' I  

Digitized using Twtin's Frequency Re-Warping Method, 
T P 0.04 

Gai.n Margin 8.679 db @ 3.75 m#nc 
Phose Margin = 50.26' 
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Figure 2.3.6: Nichol's Chart for Max Q System with Cor tinuour Autopilot ald 

Digitized using ~usjin's inquenq  Re-Warping Method, T = 0.04 

Gain Margin = 8.221 db @ 3.66 rouses 
Phase Margin 1 49.1 lo  

' + Oo3 used for ZOH Compensation 
z + 0.8 
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Figure 2.3.7: 
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N i c h o l s  C h a r t  For M a x  Q System w i t h  Cont inuous A u t o p i l o t  and  

A c c e l e r a t i o n  Compensation D i g i t i z e d  using Tust in 's  F'requency 

p r e - w a i p i n g  M e t h o d ,  T = 0 .03  

G a i n  M a r g i n  = 6.123 db @ 3.29 rad/sec 

Phase M a r g i n  = 4.69' 
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Figure 2.3.8: Nichol 's Chart for. Max Q System with Continuous 
and Acceleration Compensation Digitized using Tustin's Frequency 

Gain Margin a 5.392 db @ 3.17 db 
. . - Phase Margin @ 

1.3846 ' + 0°3 used f a  ZOH Compensation 
z + 0.8 
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Figure 2.3.9: Root Locus for Max Q System with Continuous Autopilot Digitized using * 

Tustint Frequency Pre-Warping Method, T = 0.08 
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Figure 2.3.10: Root Locus for Max Q System with Continuous Autopilot and' ~ccelemtion 
Compensation Digitized using Tvstin's Frequency Pre-Warping Method, T = 0.08 
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is digitized. The mot locus of he max Q $)stem with just the continuous autopilot 

digitized and the mot locus with al l  of the compensation digitized illustrate this point. 

T h y  a n  respectively shown in Figures 2.3.9 and 2.3.10 for T = 0.08. 

2.4 Digita: Autopilot Design for the Low Q Model 

As a starting point in the design of a digital autopilot, frequency response plots are 

wn for the low Q madel with the analog compensation replaced with a sampler and 

zero-rckr hold. The block diagram of the system is shown in Figure 2.4.1. The 

uncompnsated fnquency response plo:s 2.- shown in Figures 2.4.2 and 2.4.3 where 
v .  

the loop has been opened at K. From these plots it i s  seen #.at ~at~~pensation . ..:I-) 

-uauld and gain stabilize the rigid mode and f int  body LE -?ing mode and in 

uddition reduce the system gain at frequencies above 11.50 mdians/second is  required. 

Figure 2.4.1: Block Diagram of Uncompemakd Low Q System 



Figure 2.4.2 Nichols Chart for Unconpenmted System T = .04 Seconds - . -  
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Figure 2.4.3 Nichols Chart for Uncompensated System T = .08 Seconds 
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Digital System Design for T 0.08 Seconds 

Based upon studying the frequency response in Figure 2.4.3 the rigid mode i s  phase 

and goin stabilized with the digital equivalent of the following s-plane filter. 

The digitized version o f  this filter using Tustin's method with frequency scale pre- 

warping i s  as follows: 

The Nichol's chart is shown in Figure 2.4.4, 

. I t  was noted in Section 2.2 that o small sampling frequency w i l l  cause analog break 

frequencies to fold into the primory strip. This i s  the case for T = 0.08 seconds. 

The body bending poles at k49.67 rad/sec , in the continuous system fold into the 

primory strip at *28,87 rod/sec, for the digital system, near the vicinity of the 

second and third body bending poles. This presents an advantage in designing the 

body bending mode compensation. By introducing a notch filter at 27.5 rad/sec ., 
additioml gain margin i s  given to each o f  the three higher body bending modes m 

well as introducing phase lag to the first body bending mode. The phase log horn 

the mtch filter i s  used to help center the first body bending mode about the -I  point 

on the Nichol's chart. Figures 2.4.5 and 2.4.6 show the exploded 

mot l a u s  of the rigid mode compensated system and the rigid mode compensated 

system with o digital notch filter included. The zeros located at z = -0.580 * j 0.750 

pull the body bending poles at t27.54 raddhc away from the unit circle at right 

angles for small values o f  the open loop gain K. This makes the gain margin of the 

third body bending mode very sensitive to K. The location of the complex poles to 

complete the digital notch filter ore placed along the constant frequency lines at 

z = -0.4738 * j 0.6446. The digital notch filter then becomes 

The corresponding Nichol's chart is shown in Figure 2.4.7. 

27 
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FIGURE 2.4.4: 
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-... NICHOL'S CHART OF DIGITIZED AUTOPILOT USED FOR RIGID MODE COMPENSATION, 

Gain Margin = 8.92 db @ 5.08 md/sec T = 0.08 

Phase Margin = 32.2' 

Autopilot = 2 ~ ~ ~ ~ i ~ , ~  

F r q .  
Pre warp 

I 
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I Figure 2.4.7: Rigid and Body Bending Mode Compensated_ Lift .Off System, T = 9.08 - . 
Gain Margin = 9.58 db 3 4.88 rad/s& 
Phase Margin = 31.4O 

t 

i :, Fint Body Bending Mode Phase Margins = tlOOO, -80' 
" 3 

J i Gain Margins 

+19.25 db $3 24.83 rad/sec 3 1 
t21.42 db 73 27.53 rad/sec D180-18438-1 



v". 8,'P'.#C CourrNr 

Digital System Design for T = 0.04 Seconds 

This section provides a digital autopilot design for the low Q mcldel at T = 0.04 

seconds. In Section 2.5 the design i s  combined with the autopiiot design at T = 0.08 

seconds to pro~idc a multirate digital autopilot for the low Q model. 

As a starting point in  designing a digital autopilot the phase *.. -: gain margins are 

set for the systems rig' l mode. This i s  accomplished by the digital equivalent of 

the following s-plant filter 

G (s) = 0.8279 8 ) * (  s Y 1 2  ) 
The digitized version of this filter using Tustin's method with frequency scale pre- 

warping i s  as follows. 

0.13895z+0.13895 0.19660~+0.19660 G (z) = 0.8279 ( z - 0 m 9 0  ) ( z-0.606791 ) 
The corresponding Nichol's chart i s  shown in Figure 2,4,8, 

To increase the gain margin of the thee higher body bending modes a digital notch 

filter is used. Figurcs 2.4.9 and 2.4,10respectively show the root locus of the rigid 

mode compensated system and the rigid and body bending mode compensated system. 

For the rigid mode compensated system the body bending poles at *27,54 rad/sec 

migrate outside the unit circle for a smal l value o f  K . This i s  evident from both the 

root locus in Figure 2.4.9 and the Nichol's chart in Figure 2.4.8. In Figure 2.4.10 

the body Sending poles at k27.54 rad/sec are pulled into the compensation zeros 

located at z = 4.4000 * j 0.8500. This keeps the third body bending poles inside 

the unit circlc. The location of the complex poles to complete the digital notch 

fi l te! are placed at z = 4.3500 * j 0.4873. The complete digital notch filter is  

given by D(z). 
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~igu-e 2.4.9: Root Locus of Rigid Mode Compensated Lift off System T = 0.04 Second. 
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Figure 2,4,10: Root Locus of Rigid and Body Bending Mode Compensated Lift Off System 
T = 0.04 Seconds 
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The Nichol's chart far the rigid and body bnding mode compensated system is shown 

in Figurn 2.4.11. It  can be compared . the rigid and body bending mode compen- 
i 

sated system at T = 0.08 seconds which is shown in Figure 2.4.7. 

At this point digital autopilots have been designed which meet or exceed the design 

requirements imposed on the system by the continuous autopilot. In Section 2.5 the 
! 

multirate autopilob for the low Q and max Q s~tems are presented. 

Two multimte digital autopilot designs are discussed in this section. First the low Q 

digitul autopilots at T = 0.04 and T = 0.08 seconds are used to form a low Q mu1 ti- 
I 

rate autapilot. This &sgn will be used to outline a multimte design methodology 

in Subsection 2.7. Next the max Q multimte digital autopilot design, using a zero 

order hold as digital compensation in the accelemtion kedbock loop, is discussed. 

Low Q Mu1 tirate Autopilot 

A blockdiagram of the law Q multirate system is shown in Figure 2.5.1. The rigid 

mode is compensated at the slow sampl ing rate to keep the system design out of the 

z = +1 region in the z-plane. This helps reduce coefficient accumcy requirements and 

keeps the system from being driven by round-off noise. The body bending filter is 

used for compensating the higher frequencies and is  therebre sampled at the higher 

rate. This yields a higher @/2 which minimues the amount of noise folding into the 

primary strip. 

Havin~ previously designed rigid and body bending mode filters for the single autopilot 

the some fil ten are used for the multirate system. In Sectim 2.4 the rigid mode was 

compensated at T = 0.08 seconds with the digital equivalent of the following s-plane 

filter 

G(s) = K (5) ( ) where K = 0.6764. 
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. F i p n  2.4.11: N ichol's Chart of Rigid and Body Bending Mode Compensated LiR 'Off S ~ t m  
T = 0.04 Seconds 

Gain Margin = 8.82 db @ 4.727 md/sec 
Phme Margin = 30.4O 
First Body Bending Mode P k e  Margins = -84.165, + 94.902* 
Gain Marghr 

23.1 14 db @ 24.80 rad/sec 
19.447 db @ 27.53 1 ~d/sec 
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T = 0. 
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Figure 2.5.1: Block Diagram of Multimte Lift Off System 
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The digitized version of this filter using Tustin's method with frequency scale pre- 

warping is  as follows: 

In Section 2.4 the body bending mode fiiter at T = 0.04 seconds was h e  followinO 

D (2) = z2 - 0.800~ + -8825 

? - 0.700~ + .36ao 
I 

Combining D(z) and G(z) and usirlg a K of 0,6839 a mu1 t iratr design is  constructed. 

The frequency response and root locus plot for this system are shown respective1 y in 
I 

Figures 2.5.2 and 2.5.3. To get slightly better phase stability on the first body 

bending mode the compensation poles in Figure 2.5.3 are moved to z = -0.18 * j 0 $3177. 
I 

This corresponds to z " 0.3 * j 0.519 for T = 0.04. The N ichol's chart for this sys- 

tem with K = 0.81283 is  shown in Figure 2.5.4, I 
I 

! 

Examinirg Figures 2.4.11, 2.4.7, 2.1.3 and 2.5.4 reveals the multirate autopilot i 

design for the low Q model has no distinct advantage over the single rate design. 

The four frequency responses al l  meet the same phase and gain margin requirements. 

In addition the rigid mode compensation for both sampling rates i s  well removed from 

the z = +1 point. Therefore a multirate system yields no c~pu ta t iona l  advantage 

over a single rate system, 

Maximum Q Mu1 tirote Auto~i lot  
- - - 

The continuous maximum Q autopilot design os shown in Figure '2.1.4 i s  used as a 

starting point for the maximum Q multirate design. The continuous system has two lag 

filters in the accelerometer loop -- one breaking at 1 rad/sec and ths oher breaking 

at 17.5 rad/sec. The 1 rad/sec log f i l  k r  is  being used to reduce the bandwidth of  

th is  loop while the 17.5 rad/sec filter i s  used to attenuate body bending effects. 

'The max Q multirate design is very similar to the analog design. The 1 rad/sec 
, * 

I h 
analog filter i s  left in the loop to reduce the bandwidth of the sampled acceleration 

signal and a sample and hold operating at a sampl ing rate of  T - .08 sec is used in- 

stead of the lag filter a t  17.5 rod/sec. The sampler and hold contributes a phase lag 

39 
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Figure 2.5.2: N ichol 's Chart of the Mul tirat, tow Q Sptem 

Gain Margin = 8.86 db @ 4.36 md/sec 
Phase Margin = 29' 

First Body Bending Mode Phase Margins.= -100°, +80° 
Gain Margins 

25.96db@24.80md/sec 
27.66 db @ 27.44 rad/sec ' 4 0 .  
22.00 db >? 28.85 rad/sec 0180-18438-1 
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Fiwm 2.5.3: Root Locus of Mul timte Low Q Sptm 

- Addit'mal Zeros Located at -615.5, -1.21, 2.29 
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F i ~ r e  2.5.4: Nichol's Chart of the Fine-Tuned Multirate Low Q System- ) 

Gah Margin = 8.79 @ 4.44 mdsec 
. . 

I 
Phase Margbt = 29.5* 

First Body Bending Mode Phase Margins = -9S0, +840 . - .  
Gain Margins 1 

24.58 db @ 24.80 rad/sec 
42 , . .  

25.16 db @ 27.46 rad/sec 
19.85 db @ 28.85 rad/sec D180-18438-1 
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of 40.1' and a gain attenuation of .74 db at 17.5 rad/sec and the char- 

acteristics a n  very similar to a lag filter at higher frequencies. This design simp1 ifies 

the requirements for the acceleration loop compensation while not degrading system 

perhance .  For the mu1 tirate design the forward loop analog compensation i s  replaced 

with a digital autopilot given by 

T = 0.04 

Tust in's 
3 

K [ [;it]] = K [ 
.0742207 ( z + 1 ) 

Frequency z = .851559 
Preworping 

h e r e  K = -33113. 

I 
Figun 2.5.5 gives the Nichol's Chart fw t h i s  multiloop multirate autopilot. The phase 

and gain margins of the rigid mode duplicate those of h e  continuous sptem and the 

gain and phase margins of the body bending modes have been increased. A definite 

improvement has been made with the multirate design. 

2 .6 - Performance Resul ts 

The results involve verifying the analysis results via a hybrid computer 

simulation. Open -loop frequency response from the hybrid simulation i s  compared with 

the open loop frequency response generated by the analysis, The hybrid computer is  

used to generate a frequency response for the closed loop system 

G(3 H(s) 
W ( J  = 1 + t(s)  H(r) 

The open loop frequency response, G(s) H(s), i s  derived from the measured closed loop 

response by the fol lowing rela t ionsh ips. 

Open Loop Gain 
K 

C 
K = 
0 1 K , ~  - 2 Kc cos Qc + 1 

Open Loop Phase 
K 

sine0 = si.0, 
C 

when Kc = closed loop gain 43 
D 180-18438-1 

t 

0, = closed loop phase i 

f 
t 
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Thb assures that al l  the poles in  the simulation are not in the right half plane or 

on the j w axis for the continuous systems and not on or outside the unit circle for 

the digital systems. The systems that were verified are discussed below. 

Continuous Frquency Response for Low Q and Max Q Systems 

The continuous systems were verified by running thc frequency response for the original 

1 analog control system/vehicle combinations, The simulation results are plotted in  

1 i Figure 2.6.1 and 2.6.2. Thcse figures show the analysis results and simulation results 

f agree for the continuous system for all frequency values concidered I 

1 i 
1 Digital Filter Programming Form 

- f 
$ : Since al l  the digital filters programmed were either lag filters or body bending filters 
i. 

1 2 
i .e . they involve attenuation, the direct canonic state variable ~ro~ iamming form was 

used to realize these filters. A general secoltd order representation for t h i s  program- 

ming form is  shown in  Figure 2.6.3. The re la t ion~h!~  between the filter coefficients 

and the scaled coefficients is as follows: 

S FE 
B ' =  $ a  X 

1 
GI' = lnput 1st Summing Point 

o G2' (Summing Gain) 

S FE 1 
C1 = -& C X 'T G21 = Input 2nd Summing Point 

o (Summing Gain) 

A scaled flow diagram i s  illustrated in  Figure 2.6.4. In the results which follow on 

the digital simulations the real axis pole-zero filters are realized as first order filters 

and complex pole-zero filters as second order filters. 
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Figure 2.6.3: Second Order Direct Canonic State Variable DiaOmm 

Figure 2.6.4: Scaled Smte Variable Flow Chart 



Digitized Analog System for the Low Q Model, T = 0.08 

The next system considered was the digitized analog autopilot for the low Q system. 

The anal* autopilot was digitized using Tustin's method with frequency scale pre- 

warping at T = 0.08 seconds, The comparison be%een the analysis generated and 

simulation generated open loop frequency response data is shown in Figure 2.6.5. 

Again the simulation res~lts agree with the ancllysis results for all frequencies con- 

sidered. 

Digital Design for the Low Q Model, T = 0.08 

This design was for the low Q model with the analog autopilot rep1 ~ c e d  x ith a sampler 

and zero-order hold. The digital autopilot design appeared in  Subsectiot~ 2 $4.  The 

cornporkon between the analysis and simulation frequency response data i s  shcwn in 

Figure 2.6.6. The results agree for all frequencies considered. 

Multirate Design for the Low Q System 

The comparison behveen the analysis results and the simulation results i s  shown in  

Figure 2.6.7. This plot shows that the analysis and simulation results agree per- 

L c t l y  at low frequencies and begin to diverge at higher frequencies. This high 

frequency effect was not noticed for the other digital filters because iine frequency 

response data was not taken a t  the higher frequencies, This divergence between the 

simulation and h e  analysis results was expected because of the time delay due to 

A/D setup time, computation time -1nd D/A setup time in the simulaiion. The time 

delay equaled approximatel y .GC6 secunds for the XDS 9300 used in the simulation. 

The effect of a time d$lay i s  to add phase lag to ihe frequency response that i s  

given as follows: 

9 = -57.3 wD 

The triangle points represent the corrected simulator results when the pure time delay 

effects are subtracted out. Therefore, any discrepancies be tween the resul b are 

physically explainable. 
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Multirate Des ign for the Max Q System 

The comparison between the analysis and simulation results for the max Q multirak 

design is shown in Figure 2.6.8. The results are seen to agree within the accuracy 

of the simulation for the fieguencies considered. 

2.7 Mu1 tirate Design Methodology 

The following i s  a general outline to adhere to in designing multirate digital control 

s ysbms. It f o l l o w  closely the procedure used in designing the low Q mu1 tirate 

digital autopilot. 

1. Root Locus o f  Continuous System - This allows the designer to see the effects 

of different sampl ing rates on the folding of system poles into the primary strip. 

N o  matter where the poles of a continuous stable system are located they w i l l  

w e a r  between 0 / 2  for the sampled dato system, 
s 

2. Z-Plane Root Locus and Frequency Response at Sampling Rates of Interest 

(Synchronous) - By the very nature of including o sample and hold element 

the root locus and frequency response of the system changes. A root locus 

and/or a frequencj response of the basic s ~ t e m  is necessary to design any 

type c ~ f  system compensation. 

3. Determination o f  High Update Rate and Low Update Rate Compensation 

Requirements - This involves determining the compensation thot i s  necessary 

at Ae various sampl ing rates to meet the systems design requirements. This 

can include not only the various filters that meet the gain and require- 

ments of the system but the machine requirements, such as coefficient word 

length, as well . 
4. Multirate Frequency Response and Root Locus - From (3) a multirate sample data 

control system i s  put together. To get a total system description a frequency 

response and root locus  lot are made. 

5 .  Fim Tuning Multirate Design (Based upon (4)) - This can involve merely 

adjusting the system gain or moving the compensation and zeros to get 

the final design 



3.0 MACHINE REQUIREMENT TRADES 

The objective o f  this section is to point out the various effects software and hardware 

requirements impose on control system performance. Computer wordlength, A/D word- 

length, sampling rate, synchronous versus multirate sampling, as well as how the arith- 

metic operations are performed and what state variable form i s  used, all affect control 

system performance. These considerations are treated in a general manner in Subsection 

3.1 . Subsection 3.2 presents a computer wordlength study which specifically answers 

a number of the questions raised by these considerations for the low Q multirate design. 

In Subsection 3.3 an assembly lang~age program for the rigid and body bending mode 

compensated system for T = 0.08 seconds is presented. The purpose of this subsection 

is to give an indication of the storage and time requirements needed when a digital 

design i s  implemented. 

3.1 Machine Requiremenh/Synthesis Approach Tmdeoffi 

A block diagram of a digital computer and the necessary peripherals to interface this 

system with both analog and digital devices is shown in Figure 3.1.1. In specifying 

the machine r q  uirements i t  is necessary to study the resolution and noise characteristics 

of the various elements in t h i s  figure. For example the A/D element wil l  have certain 

requirements and the computer wi l l  have memory, word length, and execution time 

requirements. The impl ication of these machine requirements wi l l  be discussed as they 

affect the synthesis approach tradeoffi and vice versa. 

-lo/od COMPUTER ~D/D+ 

FIGURE 3.1 .l: Hordware in  a Digital Control System 



Coefficient Quantization 

The accuracy that a digital computer can store a coefficient is  dependent upon the 

computer internal word length. The performance of recursive digital filters can be 

adversely affected due to coefficient quantization. This problem has received con- 

siderable attention in the past by Kaiser [ I ]  and Roder and Gold 121. The sen- 

sitivity o f  a filter to coefficient quantization has been shown to be greatest when 

the filter pies approach the plus one point in the z-plane, This situation arises 

when the sampling rate is large ~elat ive to the frequency o f  the digital filter poles. 

Due to the finite accuracy of a digital computer, the performance o f  a digital filter 

nay become less like its corresponding analog counterpart rather than more, as the 

sampling rate is increased, 

Some examples pointing out what is happening wi l l  now be reviewed. A simple first 

order example that graphically shows the problem is  the following case considered by  

Rader and Gold 123: 

y (nT) = Ky (nT-T) -t x(nT) (3.1) 

The pole position for th is  filter is  equal to K ,  When K is realized as K + AK the 

error in pole location i s  AK,. The importance of t h i s  error becomes magnified when 

K i s  nea; unity. E.g., the maximum gain o f  this one pole filter is 

Thus, as K approaches one the sensitivity of t h i s  filter to coefficient quantization 

effects becomes large. As things turn out this situation arises frequently in digitizing 

analog filters. 

For example, the z-transform of a first order filter gives the following G(z): 

.. 
z - e  
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The Tusttn approximation to a first order lag filter gives 

G(d= (l+TTU<2 ) (2")  - T 0 ( 304) 

z - ( ;  + T $ )  

It can be shown that in the l imit as T -c 0 the denom inaton o f  both these equations 

reduce to the form d 
B 

Therefore, as T - 0 the poles of these equations move toward the point z = 1 and 

the fil ten become very sensitive to parameter quantization effects. 1 
r 
r 

The Tustin's approximation to a lead lag filter gives the following equation: : : 
1 
Y 

This equation is seen to have the same type of denominator as before but now the 

numerator has a zero that migrates as a function T approaching the plus one point 

as T-0, In t h i s  type of filter both the gain and phase become very sensitive 

to cwfficient quantization. 

Similarly, for second order filters i t  has been shown by Rader and Gold [21 that 
7 

the coefficient sensitivity problem is compounded. They use the foi low ing second I 

a 
order example to demonstrate their point: 1 

1 



This filter has complex poles i n  the z - ~ l a r n  given by 

where 

Explicit expressions can be derived for the pole position errors caused by  quantization 

of K and I. i f  i t  i s  assumed that the errors are small so that Newton's approximation 

can be applied, i.e., 

Using the expressions for r and 0 these equations become 

AQ = AL/2 ? tan e A K / ~ r  sin Q 

The error in the radius r is similar to the first order case while the error in the 
t 

resonant angle 0 i s  seen to be very sensitive at small angles. The resonant frequency 

error can ~ l s o  be seen to be inversely proportional to the sampling period T based 
I 

upon the relationship 

Research by  Kaiser [ 1 I has further pointed out that the bound on coefficient accu- I 
racy is  dependent upon the order n of the filter as well as the sampling rate. Because 

of the mu1 tip1 ications involved between coefficients, i t  would take twice as many I 
digits of accuracy to represent the coefficients of a 2 nth order filter versus an nth 

order filter. From the previous results, i t  has been demonstrated that increasing the I 
sampling rate requires an increase i n  the accuracy of the digital approximation to the 

filter coefficients. 58 t 
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Thus, a potential benefit can be gained in  terms of computer internal word length 

requirements by decreasi.g the sampling rate. This i s  especially true for filters with 

poles in the vicinity of the plus one point in  the I-plane. Root locus methods have 

been applied to study the migration of filter poles and zeros as a function of sampling 

period T to aid in  the proper choice of T. Likewire, by real ir ing the filters as low 

order elements the computer internal word length requirements can again be reduced. 

In geneml, the transfer functions of a digital controller are realized in the cascade 

The real pole and zero filters are realized as f in t  order elements and the filters with 

complex poles and zeros are realized as second order elemenh. I t  ;- also possible to 

realize these f i l ten in the analogous parallel form. The pros and cons of the parallel 

over cascade realization wil l  be discussed in the section deal ing with arithmetic noise. 

A/D fkquiremenh 

The requirements on t h i s  element are primarily due to resolution and noise level. The 

resolution capabil i ty  of the device i s  proportional to the number of binary bits used to 

represent the amlog signal. The A/D quantization step is generally chosen so that i t  

preserves the basic accuracy of the sampled sigml The effect of the A/D device on 

filter performance can be statistically analyred by considering additive noise at the 

input to the filter computation. Assuming each noise sample i s  uncorrelated and has 
2 

variance E 0 /12, the steady state variance of the f i l te- output due to this noise i s  

given by [21: 

1 -1 e 2  = f H z )  H ( )  dz (3.13) 
f 7 2 m  

when E,, = quantization level 

H(z) = filter transfer function. 
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In general the output noise variance i s  proportional to the ~ a i r l  of  the fi lter and 

inversely proportional to E, the distance o f  the filter poles from the unIt circle, e.g. 

The output noise for certain filters can also be shown to be dependent on the 

resonant angle o f  Q = o T o f  the f i l ter [21 e.g., 
r 

From this equation, i t  can be seen that a low frequency filter (aT * 0) can have three 

or foui more bits o f  noise standard deviation than a larger resonant angle implementation 

o f  the :ame filter. Thus, when trying to maintain a specified signal to noise ratio on 

the output, one might want to think about increasing T to increase the resonar angle 

o 7 .  Root locus techniques can be applied to analyze the fi lter pole zero migration 

as a function o f  sampling period 1, 

Computer Arithmetic Requ :rements 

The precision of arlthrne tic operations i s  related to the machine internal data word 

length and the method uti l ized b y  the computer to perform arithmetic calculations. 

The basic structure of a computer data word is shown in Figure 3.1.2. The first b i t  

o f  the data word is  the sign bi t  which is  normally 0 for positive numbers and 1 for 

negative numbers. This leaves n-1 other bits to specify the number in binary form. 

When the decimal point for a l l  calculations i s  assumed to be between the sign and 

the first b i t  and the remainder of  the data word i s  considered as a single fractional 

number, this i s  a fixed point data word format. A fixed point data word has the 

follow ing fixed dynamic range : 

Fixed point arithmetic util izes the fu l l  wordlength but has the inherent problem o f  

scaling quantities to remain within this fixed dynamic range. For example, in a high 

gain f i l ter implementation us'ng fixed point arithmetic,the input signal must be scaled 
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down to pmvent overflow. Therefore, the signul to noise performance o f  this fi lter i s  

adversely affected. To get around this dynamic range floating point arith- 

metic is typically used. In floating point, the data word ;: segme,,tited such that 

part or h e  word i s  the so-called normalized Fraction o f  the number while the other 

port is the exponent. The normalization process involves shifting the conients of  a 

register left until the contents of the registers siqn b i t  and !he contents o f  b i t  posirion 

o m  are not equal where vacated b i t  positions are f i l led with zeros. N o ~ r n a l i z i n ~  causes 

the original fixed point number to be shifted into the most significant b i t  positions o f  

the dota word and also maintains a count on the number of le f t  shifts. A floating 

point data word is shown ir! Figure 3.1 .3 where the normalized fraction i s  stored in  

the fractional part o f  the word and tke number o f  lef t  shift i s  stored in the exponential 

section. A general flc,. ting p i n !  number i s  thus given by 

The aritilmetic on most flight type computers is  performed on hardware thai i s  capable 

of  performing only fixed point arithmetic, The reazons for using these types of  mochir,ss 

are faster computational speed, increased re1 iabil i t y  and cheaper cost. 1 here fore, it 

is  necessary to perform some sort o f  scal ir;g on the fi lter input, coefficients, and 

sometimes even internal state variables tc not only prevent overflow bui to also main- 

tain maximum arithmetic precision. The type o f  scaling used ta implement a given 
. . 

fi lter can effect fi lter performance in terms o f  signal to noise ratio, i his error soui.ce 

for uncorrelated input signals can be considered similar to mu1 tipl ication roundoff noise 

b r  analysis purposes. [211 

Sign L Binary Point (Fixed Point Arithmt-tic) 
B i t  

FIGURF 3.1.2: Computer Data Word Schematic 



Sign 1 
I FRACTIONAL ' ' I+ I EXPONENT 

Binary 
Po in t J 

FIGURE 3.1.3: Floating Point Data Word Format 

Arithmetic Noise (Uncorrelated Input) 

The primary sources of computation noise in a digital filter are due to multiplication 

roundoff noise. Similar to the error model for A/D truncation, these error sources 

can be modelled by noise with the following variance: 
- 2  

These noise sources are placed i n  the filter state variable diagram after scaling 

operat ions and mu1 tipl ications . For example, consider the state variable diagram for 

the second order difference equation given be low (see Figure 3.1 -4): 

This filter is men to have 3 mu1 tip1 ications going into the first summer and three 

mu1 tipliccttions going into the second summer, The output noise variance for these 

multiplications is  as fo!lows: 

This noise variance can be considered as additive to the noise variance of the A/D 

twncation giving a total noise variance for the combination of A/D truncation and 

arithmetic roundoff. 



FIGURE 3.1.4: Scaled State Variable Diagram for D,(z) 

It is very difficult to give ground rules for the best method of implementing 

dgitol filters in terms of  skate variable programming form and scaling technique. Most 

work to date has shown that the parallel state variable form gives good performance 

results for a wide class of filter implementations. But there are even variations in 

the performance of parallel filters depending upon the scal ing rne thod. Thus, the 

question arises as to why the cascade form is  considered at all. The primary reason 

b r  considering it is  that the various filter blocks can be changed without affecting al l  

the coefficienk for the total filter as happens when dealing with parallel filters. Also 

by choosing the proper state variable form, combining the proper poles and zeros in 

the respective blocks and then cascading the blocks correctly, performance comparable 

to and sometimes bettjr than the parallel formcan be derived. I t  might also be men- 

tioned that although coefficient quantization ~roblems dictate breaking filters into fin: 

order elements for real poles and zeros and second order elements for complex poles 

and zeros, the computer software can be simplified by utilizing a second order filter 

as the basic building block in either the parallel or cascade form. 

The only general .esults in the literature are due to Jackson i211 whc considers the 

canonic iecond order fonn (See Figure 2.4) and its transpose and looks at the p r -  

formance of th is form for both parallel and cascade implementation. He finds that 

63 
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filter performance is  dependent upon the type of scaling used (either max value or 

RMS) and state variable form. He also shows that the implementation scheme i s  

dependent upon the measure o f  signal to noise performance. E .g ., if  one is trying 

to minimize the output noise variance (total average power) or the maximum value 

of h e  output noise, different implementation schemes would be required. 

Summary of Mach ine Rquirements/Synthes is Approach Trades 

As pointed out in Section 2.1, the synthesis approach directly affects the machine 

requirements. For example, a high sampl ing rate synchronously sampled system wi l l  

require much more computer capobit ity than a slow sampling rate version o f  the same 

filter. In appl ications with wideband frequency response requirements, the computer 

requirements con often be reduced by going to a multirate realization. The multirate 

implementation could have a fast update rote Front end to prevent folding and to meet 

the high frequency requirements, e.g. body bending filters. The low frequency filter 

requirements, e.g. rigid mode shaping filters, could be realized at a lower sampling 

rate which reduced the arithmetic and coefficient quantization problems. Besides 

giving better performance, a multirate filter can also free up computation time as not 

al l  the computations are performed every cycle. 

How the filters are split in terms of computation rate is usually obvious from con- 

sidering the respective filter bandwidth requirements. In wideband shaping filter ap- 

ications, i t  i s  sometimes necessary to combine any free lag filters with the fast up- 

date rate filters as can arise meeting shaping requirements at frequencies 

greater than the break frequency of the lag filter due to the notching c~~aracteristics 

of digitized lag filterso 

3.2 Computer Wordlength Study for Low Q Data 

The computer wordlength study was run using the low Q multirate system design pre- 

sented in Section 2.0, Four frequency responses were made using wordlengths o f  

39, 24, 16 and 8 bits. The scaled direct canonic state variable form was used in 

modeling the rigid and body bending mode filters as i t  wos in the original multirate 

design. A block diagram of t h i s  state variable form was shown in Figure 2.6.4. In 

each run h e  scaled coefficients were calculated, then truncated. The results o f  each 
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addition and subtraction were truncated as well as the result, of each rnul t ipl  ication. 

Before storage, each state variable was truncated. In al l  four runs the A I D  and D/A 

wordlengths were respectively 14 and 15 bits, including the sigr l  bit. 

In'Table 3.1 the results of the computer wordlength study are shown for frequencies 

between 0.5 radiani per second and 18 radians per secon, . The results show l i t t le 

phase and gain differences among the 39, 24 and 16 bit rum, This is not surprising. 

The poles for the rigid mode filter were shown, in Subsection 2.5, to be at z = +.502 

and z = +0.3153 and the two zeros at z = -1 . For the bod; 5er,ding mode filter tire 

poles were placed at z = 0.3 tj 0.519 and the zeros at z = 0,4 +j .85. In each case 

the poles and zeros are well removed from the z = +1 region. This is the region o f  

the rigid mode dynamics. Tht? farther removed the compensation poles and zeros are 

{ram the unit circle encompassed by this region the less sensitive the rigid mode dyna- 

mics become to truncoLion error. Therefore a computer wordlength of 16 bits would 

accurately represent the low Q mu1 tirate design, A small computer wordlength could 

also be used to represent the low W synchronous design. In the synchronous design 

tor T =I O.08  seconds the rigid body compensation poles are the same as those for the 

multirate design. The complex poles and zeros fo; th is design are respectively at 

z = -0,4738 +j 0.6446 and z = -0.583 tj 0.750. These complex poles and zeros are 

further removed from the z = +1 region than the corresponding poles and zeros in the 

multirate design. For the synchronous design at T = 0.04 sec~nds the complex poles 

are at z = 0.35 * j 0,487 and the rigid body compensation poles are at z = +0.7221 

and z = M.60679. These poles are well removed from h e  z = +I region. Therefore 

a computer with small wordlength could also represent ' N Q synchronous design 

without affecting filter sensitivity. 

As stated in Subsection 2.5 the low Q rnultirate design has no distinct advantage over 

the single rate design. This i s  not surprising. One advantage that can be gained by 

going to a multirate system is when the design must meet wideband frequency response 

requirements. The fast update rate is used to prevent folding and to meet the high 

frequency requirements. The slow update rate is  used for the low frequency require- 

ments and the arithmetic and coefficient quantization problems. In the low Q system 

design there are no arithmetic and coefficient quan,ization problems with eifher sampl ing 



TABLE 3.1: Effects of Computer Wordlength on the LowQ 
Mu1 tirate Frequency Response 

0 = 0.5 

0 = 2.0 

o = 4.0 

0 = 6.0 

0 = 8.0 

0 = 10.0 

0 = 12.0 

0 = 14.0 

o = 16.0 

o = 18.0 

i 

. 
39 BITS 

db Phase 

14.1 199" 

-3.8 209" 

-9.49 188" 

-11.6 161" 

-11.5 137' 

-8.75 114" 

+14.82 318O. 

-17 247" 

-27.7 223" 

-32,25 187.8O 

24 BITS 
db Phase 

14.1 199" 

-3.8 209" 

-9.47 190" 

- 1  . 162" 

-11.54 140" 

-8.85 116" 

16.28 337' 

-16.8 252" 

-27.21 224.2O 

-36.6 189.8" 

16 BITS 
d b Phase 

14.1 199" 

-3.86 20P0 

8 BITS 
db Phase 

1 1.03 204.9" 

-4.82 210.2' 

-5.49 189" I 
-11.4 161.5' 

-11.54 140" 

-8.86 116" 

13.97 329' 

-16.8 252' 

-27.23 218.4" 

-36.61 184.9" 

- 
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rate arld a l l  frequency response requirements can be met at T =  0.04 seconds or 

T = 0.08 seconds. There is folding for T = 0.08 seconds. The fourth body bending 

pole does fold into the primary strip but i t  folds near the second and third body 

beding poles. Here i t  becomes an advantage instead o f  c! disadvantage in designing 

body bend iq compensation. 

3.3 Mach ine Requ irements 

The machine requirements to implement the rigid and body bending mode filters for 

the synchronously sampled system are discussed in this sccti; ,~.  Using the Teledpe 

TDY-214 minicomputer and accompanying instruction set, both filters can be real ized 

with 47 core locations. A complete list of storage requirements, broken down into 

instnrction total, temporary data storage, constants, variable data storage, mu1 tip1 iers, 

adds, loads, stores and transfers are shown in Figure 3.3.1. 

26 Instruct ions 

1 Temporary Storage Location 

12 Constants 

8 Variables 

47 Total Storage Requirements 

12 Additions 

12 Locrds 

11 Store Accumulc'or 

2 Transfers 

Average Execution 
T ime/l nstruc t ion 

7 1/2 sec 

6 2/3 rec 

62/3 sec 

6 2/3 sec 

15 Mul tip1 ications 31 sec 

FlGU RE 3 -3.1 : Machine Requirements for Filter Implementation 



The filter realized with the 47 core locations i s  the digital autopilot for the rigid 
ond body bending mofes sampled a t  T = 0.08 seconds. The fi l ter i s  shown below 

2 
0.34237 (z+l) 0.248905 (z+l) 0.572192 + 0.663742 + 0 51434 
z - 0.315261 z - C.502190 2 z + 0,947582 + 0.64 

The state variables are defined as follows: 

Xl(k+l) = M.315261 Xl(k) + l0.342370 + 0.315261 (0.34237)] INPUT(k) 
OLKl(k) = Xl(k) + 0,34237 INPUT(k) 

X2(k+l) = 0.502190 X2(k) + [O. 243305 + 0.5021 90 (0.248905)l OUT l(k) 
OUT2(k) = Xqk) + 0.248905 OUTl(k) 

X3(k+l) = -0.94758 X3(k) + X4(k) + [0,66374 - 0.94755 (0.57219)l 0UT2(k) 
Xqk+l)  .= -0.64 X4(k) + [0.51434 - 0.64 (0.57219)] OUT2(k) 

OUT3(k) = X3(k) + 0.57219 OUT2(k) 

The instruction set for the TOY-214 is  of the single address type and has the following 
foma t : 

~INSTRUCTION TAG I A D D ~ E S S  1 
0 1 1 1 2 1 3 1 4  5 1 6 1 7 1  1 I 1 I I I I I I t  119 

The tag field i s  iwo bits in Ie-gth and ir~dicotes which indzx register, i f  any, w i l l  
modify the address portion of the instruction. For implementing the rigid and body 
bending mode filters only one o f  the three index registers i s  used as well as just one 
of the two accumulators available with the TDY-214. The assembly language proyarn 
is shown below. 

FILTER COMPUTATION PROGRAM 
1 

(X) means contents o f  address X 

Location 

ADD 
C T  U 

LDU 
MW 

ADD 
MPY 

Tag. Address - 
1 1200 
1 1 205 
1 1 202 

I 

Load index register 1 with (1 200) 
Load upper accumulator with (1 205 +(index register 1)) 
Mul tiply (upper accumulator) by ( 1202 '- (index I 

register 1)) 
Add to (upper accumulator) (1206 + (inde>. register 1)) 
Store contents of upper accumulator i n  1201 + 1 

(index register 1) 
Load upper accumulator with (1215 + (index register 1): 
Mu1 tiply (upper accurnula tor) by (1 205 +(index I 

register 1)) 
Add to (upper accumulator) (1221 + (index register 1)) 
Multiply (upper accumulator) by ( 1202 +(index I 

register 1)) 
Store contents of (upper accumulator) in 1177 

1 



FILTER COMPUTATION PRO GRAM (Continued) 

Location 

01 157 

Inst. Tog Address - - 
LD U 1 1215 Load upper accumulator with (1215 + (index 

register I)) 
MW 1 121 1 Multiply (upper accumulator) by (1211 + (index 

register 1)) 
ADD 1 1177 Add to (upper accumulator\ (1 177 + (index register 1)) 
STU 1 121 1 Store contents of upper accumulator in 121 1 + 

(index register 1) 
T RX 1 1146 I f  (index register 1) # 3, decrement contents of 

index register by o r s  aqd transfer control to 
location 1146. I f  (index register 1) = 0 
continue to next instruction 

LDU 1214 Load upper af cumulator with (1214) 
MW 1 205 Multiply (upper accumulator) by (1 205) 
ADD 1220 Add to (upper accumulator) the (1 220) 
MW 1201 Multiply (upper accumulator) by (1 201) 
ST U 1177 Store contents of upper accumulator in  1177 
LD U 121A Load upper accumulator with (1214) 
M W  1210 Multiply (upper accumulator) by (1  210) 
ADD 1177 Add to (upper accumulator) the (1 177) 
ADD 121 1 Add to (upper accumulator) the ( 1  21 1) 
ST U 1210 Store (upper accumulator) in 1210 
T R I  XXXX Transfer bock to main program 
Temporary data l oca t i o~  
210 stored here 
Storage location for 0 UT3 
Storage location for OUT2 
Storage location for OUT1 
Storage location for the input 
0.5721910 stored here 
0.2489051 0 stored here 
0.34237010 stored here 
Storage location for X3(k) 
Storage location for Xqk) 
Storage location for X2(k) 
Storage location for Xl(k) 
-0.9475810 stored here 
-O.bl10 stored h e n  
0.50219010 stored here 
0.315261 stored here 
0.6637410 stored here 
0.5143410 stored here 
0.2489051 stored here 
0.3423701~ stored here 



4.0 MULTIRATE SAMPLED DATA ANALYSIS METHODS 

I n  the literature there are two maior approaches to analyzing mu1 tiloop, mu1 tirate 

sampled data systems. The first approach was proposed by G. M. Kranc [I 11. I t  

involves replacing each sampler, T/N, by an equivalent configuration of advance and 

delay elements sampled at a single rate, T, This allows the already developed trans- 

form method o f  analysis for single rate systems to be applied to mu1 tirate systems. 

The second approach i s  the sbte transition method introduced by Kalman and Bertram 

[3]. Defining state variables for the continuous and digital elements as well a: for 

the zero order hold elements allows the system to be described by a set of transition 

matrices. The mu1 tirate analysis is then carried out by manipulating the various trans- 

ition matrices. The purpose of this section i s  to investigate these vo ious approaches 

and to choose the most appropriate method for analyzing both synchronous oqd mu1 t i -  

rate sampled data control systems. 

4.1 Kranc's Switch Decomposition Method 

In Appendix A two -proaches using Kranc's switch decmposition method for analyzing 

multiloop, multirate sampled data control systems are presented in detail. The first 

approach i s  Kranc's original method. The method i s  relatively straight forward but 

has the disadvantage of involving a substantial amount of work in separating each of 

the branch variables from the governing loop equations. For more compl icated systems 

which uti l  ize a digital computer for analysis, the amount of work required by the com- 

puter to separate the branch variables to form the characteristic equation i s  greater 

than the work required to do the actual system analysis. The second method discussed 

is the procedure outlined by Boykin and Frazier [121. I t  extends Kranc's technique 

by introducing a vector notation for the advance and delay elements as well as a set 

of identities needed to convert the resulting vector/matrix equations to scalar equations. 

The procedure simplifies Kranc's original technique by allowing the governing loop 

equations to be easily written down by inspection of the signal flow graph. I t  offers 

l i t t le help, however, in separating the branch variables from the governing loop 

equations. 
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An extension to Kranc's switch decomposition method which partially reduces the 

problem of separating the branch variables from the loop equations i s  the method 

dsveloped by Thomas C . Coffey and Ivan J . Wil l  iams 11 31. Their procedure is to 

approach the switch decomposition method in the frequencydomain. By incorporating 

appropriate shifts in the s-domain terms and by judiciously choosing the branch variables, 

Coffey and Williams develop an identity which can easily be implemented on a digital 

computer. The disadvantage o f  Coffey and Williams method i s  that, like Boykin and 

Frarier's method, considerable care is needed in applying the identity, Therefore 

the analyst needs extensive knowledge of the method or an intricate computer program 

for setting up the analysis. 

Two relatively recent papers by E .  I, Jury 114, 151 have extended Coffey and Williams 

switch decomposition method. Jury shows equivalence between the s domain approach 

and the z domain as well as the power of complex integration in formulating the 2 

transform. Jury's contribution allows Coffey and Williams method to be worked in the 

zdomain but i t  too fails to reduce the computer implementation problem, 

A l l  three switch decomposition methods have one common advantage and one common 

disadvantage. From a block diagram or signal flow graph point of viev: the problem 

is straight forward and easy to understand. The disadvantage i s  in  the degree of 

sophistication needed to implement the various techniques. For this reason, and for 

the relative simplicity in understanding and in implementing the state variable approach, 

Kranc's switch decomposition method was dropped as a tool for analyzing multirate 

sample data control systems. The remainder of this section is  devoted to developing 

the state variable approach as an analytic technique for synchronous and multirate 

systems. 

4.2 State Variable Approach to Multirate Sampled Data System Analysis 

The application of state variable techniques to mu1 tirate systems was first proposed by 

Kalman and Bertram [31. By using the concept o f  state and transition matrix, i t  i s  

possible to analyre both synchronous and multircte systems within the same genercl 

fromework. The state approach also overcomes a serious difficulty o f  transform methods 

by  giving time response information at all times and not just at sampling instants. This 

approach is  also easily implemented on a digital computer. 

71 
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A typical l inear sampled data control system block diagram i s  show in Figure 4.2.1. 

From this diagram i t  can be seen that the sampled system contains the following types 

of dynanic elements: continuous dynamic elements, discrete dynamic elements and 

sample and hold dynamic elements, The dynamics of these various elements can be 

described by state variable relationships. The state of a dynamic element can loosely 

be defined as the minimum amount of information, e,g., an nxl array of numbers, 

which is  necessary to calculate the future behavior of the c'ynamic element when one 

know the input/output relationship for the element and the input to the eiemnt. 

4.3 States of Linear Sampled Data Systems 

A linear sampled data system typ.:ally contains the following three types of state 

variables: 

1. Continuous state variables - The continuous dynamic elements are described by 

ordinary l inear differential equations with constant coefficients. The state var- 

iables are defined as the outputs of the integrators that appear in the state 

variable (first order) represen tation of the differential equation, 

Discrete state variables - The discrete state variables are governed by linear 

difference equations. 1 hese equations are ideal ized representations of the com- 

putations that are perfotmed in a digital computer. The computer actions necessary 

to implement these equations involve performing arithmetic operations on sampled 

input signals and stored data, storing the data necessary for the next round of 

computations and the output in a register or storage location where a 

D/A device has access to i t ,  The state variables for the discrete dynamic 

elements are the numbers that must be stored in order to perform the next round 

of computations. These states get updated only during a computation and remain 

constant until the next computation involving these states. The state variables 

are defined as the outputs o f  the delay elements that appear in the state diagram 

representation of the difference equations. 

3. Sample and Hold State Variables - The sample and hold element represents, in 

an idealized sense, the operation of sampling various types o f  'nforrnation and 
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then applying this information througli a smoothing filter :o the input of a con- 

tinuous dynamic element. So basically this element i s  a discrete-time element 

that gets updated at sampling instants and holds this value until the next sampl ing 

instant. The state of this element is equal to its output, 

From the state variable descriptions, i t  can be seen that the continuous state variables 

transition in a continuous fashion while the discrete time and sample hold variables 

may be thought of as taking place at the sompl ing instants only. 

FIGURE 4.2.1: A  ine ear Sampled Data Control System 

The state of the entire system can then be written as the nx l  column vector X 

defined as follows: 

C 
where X i s  a y x 1 column vector o f  continuous states 

xD i s  a 6 x 1 column vector of discrete states 

xSH b an n - ( Y + 8 ) column vector of sample and hold states. 

4.3 State Transition Equations 

The state transitions for the various dynamic elements wi l l  now be described. Before 

discussing these relationships, i t  is interesting to look at the time sequence of events 

that transpire in  a digital cont, I system in an idealized sense. First of all, i t  i s  

assumed that the discrete dynamic elements and sanyle and hold dynamic elements 
+ 

that get updated at a sampling instant transition in the time instant tk - t k 

Likewise the continuous dynamic elements remain unchanged over t h i s  itstant but 
4- 

trataitlon over the finite interval tk t 5 tk + 

This i s  shown graphically in  

Figure 4.3.1 . 
73 
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Discrete Dynamic Elements 

Transition 
Continuous Dynamic Elements 

/ Transition 

FIGURE 4.3.1: Idealized Time Sequence of Events 

Under the assumption that the discrete and sample and hold variables transition 

instantaneously these two state variable forms can be combined and the state of the 

entire system si r lp l  ifies to 

Discrete State Transition 

The discrete time states are transitioned by the following relationship: 

where T i s  the time i t  takes the computer to complete the computations. As 

stated previously i t  i s  usually assumed :hat the computations are done instantaneously; 
+ 

therefore, the left side of this equation is  written a tk giving 



Sample and Hold State transition 

The sampling process i s  ussumed to toke place instant~neousl~. The state transition 

quat ion  for the sample and hold element is thus given by 

System Transition at a Sampling Instant 

Under the gssumption ihai the discn te and sample and !,old elrmettt: a l l  transition 

instantaneously at a sampling instant, equations (4.4) and (4.5) can be conlbirled into 

an overall system transition relationship a t  u romp1 ing ,hnt or follows: 

where 

Continuous System Transition 

The continuous dynamic elements are described by the bl lowing first order differential 

q u a t  ion: 
C e zC = A x + fcm 



The intgyml of this equation gives the state transition relationship for the continuous 

dynamic e!e:.lcnh and is given below. 

In order to simp1 ify the expressions that follow, it is convenient to assume the inputs 

to the cont: JOUS dynamic elements are from only sample and hold elements. Since 

these inputs ure constant between sampling instants, the hllowing closed form ex- 

pression ccn be written fix the integral: 

Therefore, the state transition equatim ( in component form) for the continuous dynamic 

elements is given by 

Y n 

xi ( t , < + t )  = g C  ii h) x . ( t )  +- 
I k 

h.' (t) x. (t ') i= 1,2 ,... Y (4- lq 
I 

i = l  j = y + S +  I 
I k  

System Transition Between Sampl ing Instants 

fie tatal system transition relationship between sampl ing instants can be written as 



where 

Stability of Synchronwsly Sampled Systems 

The stability of synchronously sampled systems can be analyzed by using equations (4.6) 
and ( I )  The complete state transition from time n T to time (n i l )  T is  given oy 

x((n+l)T) = 9 (T) (B x (nt)) f r(nT) 

= @ (T) x (nT) + h (T) r (nT) 

h (1) 

'akin9 fhe z-transform of this expression and rearranging gives 

The cbmcteristic equation for this system i s  therefore given by 
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These results are summarized i n  the following theorem [31: 

Theorem ? . A stationary linear system is stable i f  a l l  n zeros, z., o f  the polynomial 
I 

These resul h are c ;L ~ m l e n t  to the resul h using z-transform theory. That this i s  the 

case w i l l  be demonstrt.ted by working an example problem by both z-transform and 

state variable methods. 

Example 4.1 

Consider the sampled data control system shown in Figure 4.3.2. Taking the z-trans- 

form of  this system gives the following results: 

The open loop frequency response for this system can be evaluated by  plotting the 

system poles and zeros in the z-plane and evaluating the magnitude and phase from 

tnese ~ in~u la r i t i es  to points on the unit circle. The root locus for this system can 

likewise be ascertained. 

Example 4.2 

Consider again the system shown in Figure 4.3.2.  Thc state variable diagram for this 

system i shown in Figure 4.3.3. From th is  figure the state equations for the dynamic 

elements are given by 

- 
X~ - X3 

% = O  

ond the state t--rr*:ition relationship a t  a sampling instant is 

+ 
X3 (nT ) = r (nT) - kx, (nT) 



Figure 4.3.3: State Variable Diagram for Sampled Sytem 

T = l  KC. 

-rT 1 - e  - 1 
s s * - 

1 
ST 

' t 

? 

k * 

Figure 4.3.2: Sampled Data Control System 



The A and 8 matrices for this system are as follows: 

Evaluating the relationships 

or iust numerically integrating the equation X = A X  over a sampling period, the 
transition matrix fiT) i s  

The system transition matrix + (T) i s  therefore as follows: 

'TFe characteristic equation then becomes 

The open loop poles* for this system can he f ~ u n d  by evaluating the charccteristic 
equation a t  k = 0 giving 

-T 
z jz-ij (z-e ) 

The open locp zeros for the system can be determined by subtracting the characteristic 
equation with k = 0 from the characteristic equation with k = 1 giving 

Thus, the system transfer function i s  given as shown below: 

+ These results are based upon the assumption h a t  !he system transfer function is  of 
the f~nn:  
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This transkr function is  seen to be e q ~ d  to the results as derived from z-transform 

theory. The root locus for t h i s  system can be found by solving the characteristic 

equation (4.21) at difference values of k, Likewise, the frequency response can also 

be evaluated for this system. 

The presented simple example gives the impression that the state space approach leads 

to a more complicated solution than analysis by the classical methods. This might be 

the case for this simple example except that a computer implementation o f  the clas- 

sical approach would require paitial fraction expanding the f l ~qc t  ion G(s) and then 

possibly doing a table look up of stored z-transforms. I t  i s  then necessary to re- 

combine the z-transforms to get the transfer function. The state space approacli i s  

seen to involve matrix maniluparions which can be readily carried out on digital 

computers. More wi l l  be said in the next sectior: concerning the pneral  app! icabil i ty 

of state transition approach technques to the analysis of more complex systems. I t  

might also be mentioned that the state transition approach also leads quite readily to 

optimal synthesis and to the concepts of controllability and observabil i ty for discrete 

and continuous time sys tems . 
4.4 Extending the State Transition Technique to More Complex Systems 

Theorem 1 has been shown to be idectical to z-transform results that require the system 

closed loop poles to l ie within the unit circle in  the z-~Iane for stability. The use 

of z-transform techniques has been l irn ited to studying synchronously sampled s y  terns. 

Modifications and extensions have been proposed to the z-transform but these results 

have been shown to be cumbersome to apply and not applicable to a w~de class of 

problems. The stote space approach of Kalman and Bertrarii can be applied to a 

much broader spectrum of sampled data problems. Also, for problems where a staiionary 

transition matrix can be defined, Theorem 1 b applicable with the appropriately de- 

fined $ . I t  has been pointed out in Reference [31 that a stationary transition matrix 

can be obtained whenever the sampling operations repeat in a periodic fashion. Some 

sample cases where stationary tram.ition matrices arise wil l  now be reviewed. 

Cyclic Variable Rate Sam$ ing 

The sampling operation in a cyclic variable rate system could be assumed to follow a 

pattern as shown ;n Figure 4.4.1. The samples are synchronous but the rate is seen to 

vary in a fixed cyclic manner. 
I 

8 1 



Figure 4.4.1: The Sampling Process for a Cyclic Variable Rate Sampler 

ZOH 

Figure 4.4.2:Cyclic Sampling Rate System 

Figure 4.4.3: Time Sequence of Transitions 
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'he transition matrix for this sptem w i l l  be stationary i f  a basic sampling period o f  

one second is considered. For the simple system shown schematically in Figure 4.4 .2  

the stationary tmnsition matrix w w l d  be CO~PIJ  ted as follows 

First, define the relationships 

; = AX 

Second, solve equation (4.25) for (d (Ti) and then use the B matrix to define the 

following stationary tmnsition matrix (see Figure 4 -4.3). 

The characteristic equation for this system i s  given by 

and i t  is thus possible to conduct both frequency response,root locus and time response 

analysis o f  t h i s  type system. 

Multimte Sampled Data System Ocsiqn 

A multirate sampled data system is assumed to have more than one sampler where the 

sampling process could be as shown in Figure 4.4.4. Multirate systems w ~ i i  e h i b i t  

a stationary transition matrix whenever the samplers act synchronously in  a cyclic 

manner. This wil l  be the case whenever the ratio of the various sampling periods 

is rational. For example, for the samplors in  Figure 4.4.5 the period T for which al l  

the samples act synchronously i s  T = 1 second. In general, the shortest period for a 

stationary transition matrix is given by 

T./T. = i ' *here p and q are relativeiy  rim integers. 
1 

The sampling patterns have a least common period given by 



0 T = 1 sec C 

c- T = 113 

c T  = 1f 6 

--I 
9 A A 

1 I 
1 i  

v v v 

FIGURE~,~,~:SAMPLI NG PATTFRNS FO" MULTIRATE SYbTEM 

FIGURE~.~.~:TRANSITIONS FOR ;VIULTIRATE SYSTEM 



7-r B'IIE'ZkrG c o u r * w v  

When T&. is irrational, i t  i s  impossible to write a stationary transition matrix. I f  
' 1  

p and q a n  large integers then almost the same situation arises as i t  takes a very 

large number of intervals to define the overall stationary transition matrix. 

For multirate systems where i t  i s  possible to define a stationary transition matrix, 

the analysis proceeds as for the other types o f  systems analyzed, For the system con- 

sidered in Figure 4.4.4, the operations that must be performed to define the matrix 

(T) are as follows (see Figure 4.4.5 j: 

whare the 8 matrices are given by 

0 = discrete tmnsition matrix when all samplers are acting synchronously 

B1 = discrete transition matrix when sampler with T = 1/6 i s  acting 

B2 = discrete transition matrix when samplers wid1 T = 1/6 and T = l;3 are acting 

B3 = discrete transition matrix when samplers with T = 1/6 and 1' = 1/2 are acting 

and 8(1/6) is  the continuous transition relationship evduated for t = 1/6 sec . 

Using the q5 (T) defined by equation (4.28a), system stabilit, can be analy~ed by 

applying Theorem 1. Thus, the characteristic equation For this system would be given 

by 

Some example solutions using the state transition approach developed in this section 

w i l l  now be compared with the solution technique of Kranc for the system shown in 

Figure 4.4.6, 

State Transition Solution 

The state relationship for this system between sampl ing instants is as follows from 

inspecting Figure 4.4.6 , 



or in matrix form 

; = Ax 

where 

The state transition relationship when both samplers act synchronously i s  given by 

where 

B  = 
0 - 1  0 0  

1 0 0 0  

Likewise, the state transition relationship when only the fast sampler i s  acting i s  

described by 
+ 

x (nT. ) = Bl .( (nT.) 
I 

(4.34) 

where 

The ,%o B  matrices are seen to d iffsr only in the third row. 

Using the relationship 1 

or just numerically i n t e g r a t i ~  equation (4.30) over a period T/hl, B (T/N) is  found 

to be as follows: 
86 



For th i s  example, assume that N = 2. The stationary transition matrix for this 

sikation involves h e  transition shown in Figure? 4.4.7 which is as follows: 

Performing these matrix nu1 tip1 ications, gives the following ~ (1.): 

The characteristic equation i s  given by det z I - $ I = 0 and using (4.39) this I 
relationship i s  as follows: 

n 

Kranc's Time Domain Sampler Decomposit~on Solution 

I t  i s  instructive to rework h e  example o f  Figure 4.4.6 using Kranc's technique. For 

N = 2, the fast sampler must be replaced with two parallel samplers acting at the 

s lwer  rate but with appropriate time shifts in  their channels so that the sum of the 

two is equivalent to the single fast s ~ r i ; ? I ~ r .  The equivalent system i s  shown in 

Figure 4.4.8. 

00 6 0 0 0  2 1 4 3  O R ' G  a t 7 1  
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FIGURE 4.4.6: EXAMPLE SYSTEM 

F!GURE 4.4.7: TIME SEQUENCE OF IRANSITIONS FOR N = 2 

FIGURE 4.4.8: EQUIVALENT SINGLE RATE SYSTEM 



The blocks labelled G(s) and H(s) reoPzsent the combination of  the zero order 

C holds and the original transfer functions and ore dzfined as fol!ows: 

From Figure4.4.8 the system transfer function in the z-domain can be written as 

where the characteristic quc t ion  i s  found by equat;..~ the dencminator of this 
expreirion to zero. 

The z-transforms of the varicus terms in equation (4.43) c.-. given below: 

Plugging these expressions ?>to the denominator af (4,43:, the chbracteristic eq u ~ t i o n  
for this svstem hecomes: 

This equation i s  seen to q u a 1  equatio;r !4.40) (the state transition derived characteristic 
equation) except for the tw:, extra zeros in (4.40). Tnese extra zeros resuit from the 
discrete states x ard - and correspond to tt- 'wo zero co!umns 'I: the matrix @ (T). 

1 Based upo.1 the ? act that "4 r,b(T) i s  b e i q  uszd tc define the stationcrrv !,:nsitior~ reloiion- 
I dl ip 
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The zero columns of $(I) imply that the states x and x need not be known at the 3 4 
s t  km sawling instant in order to find the state vector at the (k + 1) sampling instant 

131. Thus, x3 and r ,  can be dropped from (4.45) and the evaluation of the deter- 

minant for the characteris tic equation can be greatly simpl ified by reducing the order 

of the matrix l z  1 - $ ( . I t  must be pointed out that q5 (T) could not have ex- 

pressed as a simple product of matrices i f  x and x4 hod  bee:^ dropped before obtaining 3 
the final resul t. Therefore, only after +(T) has been computed can simpl ifications be 

made. 

The follow ing technique- were considered for analyzing mu1 tirate sampled data control 

systems: 

1) Time-domain switch decomposition method of Kmnc (1 13 . 
2) Vector operator signal flow graph technique of Boykin, Frazier, et al (121. 

3) Frequency domain approach of Coffey and Williams (131. 

4 Z-plane technique of Jury [IS]. 

5)  State variable approach of Kalman and Bertram [31. 

The state transition approach of Kalman and Bertram was found to be the method with 

the most general applicability and was also found to be amenable to digital computer 

solution. 

It was demonstrated for systems described by stationary difference equations that the 

characteristic equation is given by the follow ing express ion: 

when +(Tk) = 
II n B (Ti) Bi 
i = l  

$ (T.) = Transition relationship between smpl ing instants 

i 
= Transition relationship at a sampling instant 

a 
Tk  = P T. the shortest period for a stationary transition equation. 

t i = l  



A statiomy multimte system is stable i f  the n zeros of the characteristic quation 

a n  less thonone i.e., 
I z i  I <  1. 

If a syrtem is mnstationary, the pmvious expression no longer holds and one is 

k e d  to nhlm to the busic definition of stabil ity to analyze these systems. That 
c, 

is, o stable system w l l  have bounded outputs for all bounded inputs. Applying this 

definition of  stability to nonstationary sampled data control systems implies that the 

pmduct of the transition matrices approaches zero a the number of products gets 

Iwge. This can be formal l e d .  as follows: 

+(TI) S(T2) . . . $(TN) -0as N - o 

From a control system designer's standpoint, th is approach to stability is  not very 

enlightening as it says nothing o f  relative stability. 



5.0 MULTIRATE ADAPTIVE CONTROL SYSTEM TECHNIQUES 

This section discusses the results of a l iterature search, and study of adaptive control 

schemes that appear applicable to space shuttle. Gibson [311 has shown h e  classical 

adaptive control problem to be separable into (a) pammeter identification, (b) state 

estimation, (c) control. The parameter identification task is by far the most difficult 

problem to solve; therebre, i t  wil l be emphasized in the work that follows. 

5.1 Online Technique of Lobbia and Saridis 

The first technique to be discussed is due to Lobbia and Saridis [71 . Tht, consider 

the problem of online identification and control of a stochastic process that can be 

expressed as a linear model with unknown parameter coefficients. This adaptivs con- 

trol system minimizes a quadratic performance criteria in an asymptotic sense. Figure 

5.1.1 shows a block diagram of this controller. The system is required to be: (a) linear, 

(b) time invariant, and (c) closed loop stable, and i s  assumed to be completely con- 

trollable and observable. The disturbances are assumed to be independent and Gaussian 

with zero mean. A known Gaussian sequence with zero mean i s  added to the control 

sequence to act as a system probe to facilitate identification. 

For the ndimetlsional system, and r-dimensional observation, the input-output in- 

formation is  used to define "auxil iaryM vectors. These (gr)-dirnensional (g - < 2n) 

vectors contain information necessary for a new system parameter estimate: 

8 A 

(09 contain informotion on current pammeter estimates (gr x gr) 

4k+g-1) 
y(k) vector of gr known input noise samples. 



SYSTEM DESCRIPTION: 

S (k+l) = As (k) + B u (k) + y (k) + Dw(k) (d) 

z (k) = Hs (k) + v (k) 

u (k) = CONTROLLER (=I) 

-1 -1 
A. = PAP , Be = PB, He = Hp 

2 (k] 

- 
c_ FEEDBACK CONTRO U E R  

MATRIX 
TRANSK>RMATlON 

1 
> 

F I N R E  5.1 .I: SELFORGANIZING CONTROLLER IN CANONICAL FORM 
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Assuming that h e  system is  controlled in a stable manner, then the above vectors 

provide a new estimate of  the system parameters as indicated in Figure 5.1.2. This 

figure also illustrates the computational sequence of  the identification algorithm. 

The heart of the algorithm is the ireration sequence indicated in Figure 5.1.3. 

Possible Problems 

This identification algorithm presents the follow ing questions: 

(1) Would parameter estimation algorithm converge for a non-stationary system, 

i.e. the formulation only provides for the "asymptotic" convergence o f  a 

quadratic cost function based on a linear, stationary system. 

(2) Would the identification algorithm converge i f  the true system i s  nonlinear 

i.e. would the estimation algorithm converge to a finite dimensional linear- 

model equivalent to the nonlinear system, 

(3) If the estimation algorithm i s  constrained to some n-dimensional linear 
1 

system, and i f  the actual linear system i s  of dimention n > n would in this 

case (a) the algorithm attempt to estimate the "dominant" system dynamics 

(b) would the algorithm be stable. 

(4) The impact of practical computer storage and cmputat ion time f imitations is 

unknown. 

Any real-world problem is to some extent non-stationary and nonlinear. Computer 

limitations dictate limiting system models (and associated calculations) to significantly 

smaller dimensions than the best estimate of the actual system (i.e. space shuttle 

equations). 

Due to the above potential problems, a high technical risk is  assigned to the 

implementation of the identification algorithm as given. 

5.2 Maximum Likelihood Method of Stepner and Mehra 
- - - - 

Before a practical autopilot can be designed much preliminary data on aircraft stability 

and control dcriwtives must be derived. This suggests some sort of off-line identi- 
3 L 

fication algorithm [I 61. A sotisfac tory solution of the off-I ine identipication problem 

can significantly simplify the adaptive autopilot problem, by: 
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(a) establishing relationships betweert sensed data and key stclbil i t y  parameters, 

(b) simplifying the gemral model by indicating the dominant dynamics. 

For example, off-1 ine analysis (161 may indicate that expl icit on-1 ine parameter iden- 

tification is not necessary for a successful autopilot implenlen tation. Hence, we are - 
led to a review of the off-line parameter identification algorithms of Stepner and 

Mehra 1161. 

Reference [I61 discusses the application of a general izec' identification method for 

Flight Test Data Analysis. The method is based on the Maximum Likelihood (ML) 

criterion and includes output error and equation error nrethods as special cases. 

The development of the General bed Maximum Like1 ihood (ML) Me h o d  for Aircraft 

Parameter Identification has been motivated by several considerations. First, the 

Maximum Likelihood methods are known to provide better estimates than other methods 

t201. Second, ML methods are more general and can handle both measurement and 

process noise. in cases where no process noise is present, and the covariance o f  the - 
measurement noise is  known, M L  methods reduce to the Output Error Method [I", 181. 

Similarly, in cases where no measurement noise is  present, the ML M,sthod reduces to 

the Equation Error Method [18, 191 . Third, ML Methods yield realistic values o f  the 

variances o f  the parameters. Fourth, ML Methods can be used to estimate the co- 

variances of the noises. This eliminates the problenr o f  specifying the weighting matrix 

or the covariance of the measurement errors. 

Outline of Algorithm 

The maximum l ikel ihood identification method, as implemented by SC I, i s  indicated 

schematically in Figure 5.2.1 . 
I t  is assumed that the structure of the system i s  known. The unknown parameters are 

expressed as a vector 8, A maximum l ikel ;hod (ML) estimate of 8 is desired. A 

maximum likelihood function is constructed assuming that the constrained model is  

mar optimal, so that the error between the model output and actual system output is  

a gaussian zero mean white noise innovation sequence v . 
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Measurement Noise 

Input Signal - Actual Output - 
System ProcesTC . Performonce 

Noise Output Measurement Criterion 

Noise 
Optimum Filter - 

with 
Adjustable 
Parameters J 

FIGURE 5.2.1: IMPLEMENTATION OF MAXIMUM LIKELIHOOD ESTIMATOR 

The ML estimate 8 is obtained by maximizing a conditional probability density function, 

or m in im iz ing 

= i 2, [ i  B ( 1  + 

(5 01) 
T 

where B(i) = H. P. H + 
I I I 

H = model measurement matrix 

P, = state error covariance matrix 

R = measurement error covariance matrix. 

Minimizing Equation 5.1 subject to the covariance model constrainb is  simpf ifi..' by 

a steady .state B and Kolman Filter assumption 1161. The problem is consequently 

reduced to finding the roots for 

The roots of  &cation 5.2 ore found by a modified Newton-Rophsan algorithm. 

This modified Newton-Rophsan algorithm is considered the main advance over previous 
? 

98 

D 180-18438-1 1 i 



THE B)mz#H& C O u W A N V  

identification algorithms. The key Feature is the use of the "information matrix " based 

on the innovation sequence sensitivity to parameters : 

The parameter update i s  calculated as follows 

In conclusion, the Maximum Likelihood method developed by Systems Control, Inc. i s  

a combination of three steps: [I61 Kalman filtering to estimate the states and generate 

a residual or "innovation" sequence; [I01 a modified Newton-Raphson algorithm for the 

pamme ter estimates and [I71 an algorithm to estimate the noise statistics (mean and 

variawes o f  the measurement and process noise) 

Results of Identifying Aircraft Stability and Control Derivatives 

Data in three aircraft were analyzed using this algorithm. The three aircraft data 

were from: 

(a) X-22 VTOL computer simulation 

(b) HL-10 l i f t ing body flight data 

(c) M2/F3 l ifting body flight data 

In al l  23, 20, and 22 parameters, respectively, were identified. Each identification 

task. had its unique pr~blems, requiring non-tandard fix up. 

Problems i n  1dent;ricot;on --- 
Most o f  the problems encountered could be related to attempting to identify parume ters 

associated with unexcitod modes. These problems are called "identifiabil i ty" problems. 

For example an inadequate "reference model structure" may force the parameters of the 

model to account for some major unmodeled effect. 
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Erron in instrumentation may result in non-physical parame tor values. When control 
1. , I 

input is  expressible as a linear combination of the A/C response variables, the in- 

formation matrix (M) should be computer leaving out one or more c f  the smallest I . I 
eigenvalues. Each eigenvalue which i s  left out relates to a singular direction in 

parameter space and therefore indicates a combination of parameters which can not 

be uniquely identified. 

Comments 

The Maximum Likel ihood identification program described i n  [I61 i s  considered as the 

"state of the art." The reported performance is considered exceptional. Neither the 

program nor algorithms are available for inspection and verification, i,e . , they are 

not government property. Reference [I61 reports on the parameter identification results 

and rerely describes in general the actual identification program. 

5.3 System Identification Techniq~ of Lion 

Introduction 

The system parameter identification method of Lion [221 summarized here appears suitable 

for use in adaptive autopilots [261. The problem considered is the identification of the 

dynamics of a plant where only the input and output can oe observed. Lion's identi- 

fication algorithm does this by continuously adjusting the pararne ters o f  a model of the 

plant so as to null some measure of error ( r  ) between the model and the plant. The 

two most widely analyzed error measures are (a) the response error, and (b) the equation 

error I251. The response error system has the advantage that only the i v u t  and output 

of the system need be measured. The equation error, on the othet ;land, i s  an alge- 

braic function of the parameters, and therefore has the advantage of giving a parameter 

adjustment method according to a "steepest descent" law. However, in equation error 

sptems, all state variables must be measured or generated (estimated). Lion's "gen- 

eral ired equation error'' method possesses the advantage of both types; that i s  (a) only 

input and o u t  ~t need be measured, and (b) i t  i s  an algebraic function of the para- 

meters, therefore allowing a true steepest descent path in oammeter space. Global 

asymptotic stabil i ty for a large class o f  inputs is proven. 
3 
1 
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The development is for or srinDli input, single output stationary linear sytem. The 

t j  system input signal is  required to excite all modes associated with the parameten to 

be identified. The method [i21 is applicable to nonlinear s p e m  as long as the 

a p a m e t e n  to be identified enter linear1 y; ie: parameter "c"  in  Eql~ation (5.5). 

It is necessary that the (om of  the nonlinearity be known, 

The usefulness o f  h e  identification mehod [221 in adap ' autopilot design i s  its 

rapid convergence rate. If the parameter variation with time is  much slower than 

the system time constants, satisfactory parameter identification is  obtainable 122, 24, 261. 

Summary o f  Lion's [221 Parameter Mentifica tion Algorithm 

Consider he system to be identified reprewnhd by the transfer function 

n -1 

l e t  "u" and "y* be he plant input and output, respectively. We want a real n tir 
h 

porometer estimator such that (â , b) converges rapidly to (a, b), ie: Si+aif bi --• I . 

, '  
; The parameter estimate error requiring only h e  system input and output is  derived as 



! 
\-1, 

If we replace bi and ai by a neasun of  h e  ermr b . - 
f 

! 

the estimates as follows: I 
A A 

N (st b) Y(s) - D(s .a) U(s) Error 

A 
The above N(s, b) and D ( s t  3 are not real istic "state variable fil ten" since they 

represent differentiation o f  y and u. Therefore a low-pass filter, H(s), Is  introduced 
I 

as follows: I 

Next the polynomials N(s, b) and D(s, b) are general ized by replacing "siu by 

"independent" polynomials in s. I 

and 
n-1 

b A 
6(s) D(p.(-1, I 8 = pi(l) ai 

i=1 , 

The p.(s) are constrained or bllows: 
I I 

(a) pi(3 1re 'lindependent", that is  there exists no constants c.. such 
'I 

that pi(3 = c.. (p.(3 for all i f j .  
'I I 

(b) H(s) pi(') a n  " ~ o w q o n "  

I 
With the inkodltction of the polynomials, pi(s), the correspondence between (a., b.J 

I 

A 
I 

and (Sit bi) may no longer be one-to-one. The relatiomhip between (ai, b$ and 

(Gi, $i) can be derived by comparing coefficients of  like powen o f  "sY in 
I 
I 

h 
D(S) D(S) and G(t) = N(S) (5.13) I 
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Fimlly using Equation (5.11) and (5.12) we have the general'zed parameter estimation 
3 

*not, & • i 

when H(s) Pi(J Mi are the "state variable filters." Next define the following 

?tote variables. " 

A 
u. = Mi U(S) 
I 

Using these definitions Equation (5.14) becomes 

2 
Having defined the error t a performance criterion P( t ) = /2 is selected. The 

method of "steepest descent'' or gradient to the P(0) surface leads to the parameter 

estimate adiustment law: 

A a .  4 - = - k c  . a  P 4L = +k r yi 
I A 

a g. a ai 
and 

I 

The C = 0 surface describes a hyperplane in the space spcsnned by the parameter 
c. I 

1 

t estimates (gi, b$. The desired estimates of  (ai, bi) cornspond to a unique "match 

I paint" in the hyperplane. Parameter estimation convergence to this unque point in 

iflo ( C = 0) -hyperplane is  guaranteed by excitation of al l  variables (yi, ui). Or in 

i other words, the system input must excite all system modes in order to guarantee con- 

vergent estimation of  parameters. 

- 
( 1 

DO .no> ? * a )  onla. .I?* 



Extensions: 

Preliminary investigations on the "state variable filkn" for Lion's algorithm, indicate ..' 

o relationship to h e  "observer," state estimation filters [Dl. This state vuriable ob- 
I ,  

i 

wmr relationship allow. lor rhe e x h d o n  of Lion's algorithm to system containing \ I 

process and measurement noise. Lion's apprmch to mn-linear systems may pmvide 

an externion to the "observer identifier'' approach of Reference 1281. 
1 

< 

' b 

Conclusion I .  

Lion% [ 22, 231 parameter identification algorithm appean awl icable to real time outo- 

pilot applications I261. State estimation filters ("observers8') Ref. I27l provide guidance 

in the selection of the "state variable filters" for the identification algorithm. 

1 .  

The system input must have the necessary harmonic content to excite all system modes 

Tor the algorithm to converge. This appears not to be a pmctical problem since ran- 

dom d t turbances can provide this excitation. 

5.4 Extensions of Lion's Technique (Luder's Technique) 

Introduction 

Lion's I221 parameter identification technique was recently rediscovered in the 

l i t e m ~ r e  1291. The re-interpretation of Lim's rewlb 1291 in the light of observer 

theory [27J provida a minimal stote and parameter estimator. The developmnt k 

for a single-input single output case; extension to the more geneml is stmight 

forward t301. 

Summary of State and Parameter Estimator 

Given the system transfar function (5.20) with unknown parameters ( a ,  4 )  



FIGURE 5.3.1 t PARAMnER IDENTIFICATION EXAMPLE 
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This transfer function is expressed in terms of - known design pqmmeten ( A) gives 

The relationship between ( a , p )  and (a, b) in t e r n  of (A)  can be derived by 

quoting (5.19) and (5.20). 

The state vector quations (5.21) are motivated by the desire to associate the output 

of Lion's ill state variable filter with actwl s r t e m  states. See Figure 5.4.1 for the 

block diagrm representation of Equation (5.21). 

T where a = (a, .. ., an) 

F = diag (- A2, ..., -AJ 



FIGURE 5.4.1: STATE VARIABLE BLOCK DIAGRAM EQ UIVALENCE 
1 07 



The "observer" quation bsed on Eqwtion 5.21b with w as irput i s  given by 

0 

if the &server ga:n is as follows: 

Thus we have the adaptive observer of Reference D91. Finally using the "steepest 
descent" D l  parameter adjustment law, I 

- 

We hbve the parameter and state estimation algorithm 091. This algorithm is 
summarized in  Figure 5,4.2 . I 

Lion's [22l development is  more general ihan [291. Specifically non.~totionary, noisy, 

and nonlinear problems call be treated by Lion's 1221 method but not by the method of . 

1291. Analytic extension of  1291 and computer simulations are considered to be poten- 1 
t ially fruitful areas of  effort [291. 

1 
Example : 

Given: - A third order system with unknown parameters (a., b.) 
I I 



FIGURE 5.4.2; STATE AND PARAMETER ESTIMATOR 
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Find: The adaptive ccntrol law that fixes the closed-luop chomckristics, e.g. - 
suppose i t  i s  desired to set the closed locip at 

( 1 ,  3, 3 (5 a26) 

Solution: Since the syrtem eigenvalua are inqriont under similarity transformation 

_. 
any convenient coordinate system can be used (see Figure 5.4.1 ). 

I 
The' dynamics matrix in  terms of (2) becomes 

t 

A 

The adaptive control law i s  derived by assuming: 1 

Then Ejquation (5.28) becomes 

I 1  

The adaptive gains (c,, c ) are determined from Equation 5.30 by equating i C2' 3 
coefficients of like p w e n  of s i n  Equation (5.31). 1 



-." 
t 1 - B@EY2%G eew*..,v 

- replacing (a, b) by (8, %) ww+ hove the adaptive gain elements (c c ) a s a  
(, 1 A 4 

1' C2' 3 
function of (a, b, A ,  r). 

- 
( The above algorithm is consrZe~d as the "state-of-the-art" in on-line adaptive 

co..rtrd system techniques. 
t i  I 

t 

5 .5 Exknsions to Luder's Technique 

An extension to Luder's 1281 parorneter-state estimation algorithm i s  presented in this 

section. This extension is  considered superior to the formulation given in 1281 

k a n a  of  the greater "state wriable filter" outpu: separation 1221. This greater 

i filter separation results in better parameter observab il ity, and hence better algorithm 

i 
t 

- 
Brief Development 

J: j 

1 It is assumed that the completely observable system can be described by an n-th 

order time-invariant differential equation. For the sake of simplicity, tile raw can- 

onical Form is derived only for the single-input single-output case. Nevertheless tha 

extension of  th i s  canonical form to the mu1 ti-input case i s  straight forward. 

Given: A stable stationary observable system tronsfer function with unknown 
porometen ( a ,  B 1 

n 

Find: Conwrgent parameter and state estimator 
i 

Solutfon: 

Rcstriction of Lion's [221 "state variable filter" to a simp!, fonn leads to a stute 

estimate (observer) relationship. The transfer function (5.32) can be expressed mom 

(-*- a conveniently in terms of  known parameters (X.) as follows: 
I 



where 
n-1 

I n  expression (5.33) the (a, b) are now the parameten to be identified. The trans- 

lomation relating (a, b) to ( a ,@) involving ( 1.) can be derived easily by equating 

coefficients of like powers of s (see appendix B). The fonn of Equation (5.33) is  

motivated by convergence requirement, and results from the replacement of  the in- 

tegrators in Figure 5.5.lb by "louy integrators" Figure 5.5.2. 

The new canonic form i s  as follows: 



FIGURE 5.5.la: OBSERVABLE CANONIC FORM 

FIGURE 5,5,€b: EXPANDED FORM 
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FlGURE5.5.2a THESYSTEM ' 

FIGURE 5.5.2b THE NEW CANONIC IDENT lFlER 
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where 

and where 

1 
b = (bl, . .. bn) ; vn = y = system output 

wn = u = system input 
- 

L 

E - - 
1 I 

Figure 5.5.2 si~mmarues the above state variable form, note that if all A. = 0 then 
I 

i ( 0  ,& = (a, b) and we have the "expanded controlluble canonic form" indicated in 

I Figure 5.5. lb. 
j i  . 

Consider Equation (5.35), treat w as a system input, then the state "observern (271 

aquation is given by Equation (5.36): 

DO ecco ¶ t a n  Ollra. 4 I T t  



Next select the "adaptive obsennr" gain 

(5.37)** 

and substitute (a, b, W) for (a, b, w) in (5.36) ~ ie lds  h e  identifier (5.38), which 

is summarized in Figure 5.5.2b. 

The rteepst descent" parameter cdjustrnent im 1221 adjusts the pammekn towards 

the e = (i - 3 = 0 surface. From Equations (5.35) and (5.38) we have: 

The normal to the i = 0 hyperplane in the 'pace spanned by the parameter estimates 
A A 2 

(G, b) is in the direction of "steepest descent." Define F - 1/2 (6) as a metric to 

the a = 0 surface, then 

A aF  A A q = - s i  - -8i ( -ew i )=+8 ;  e wi 
at. 

1 
1 ** A minimal stutionary (non-odvtive) observer rtisults if we select k (0, . 1 , 



m.= mmEIAI'i CoYLALI. 

This prometer adjushnent law coapletes the adaptive observer identification algorihm, 

as su.lmarized in Figure 5.5.3. The above parameter adjustment lows can also be 

developed or o convenient sekcticn satisfying the estimate convergence proof given 

in the next section. 

Roof of Estimate Convergence 

The L p n o v  pmof developed here i s  based on [281. This is considered mote elegant 

than the convergence proof given in t221 , since m hueristic argument on hyperplane 

motions is npuired. Before proceeding with the pmof i t  is cmvenisnt to recall the 

superporit*m theorem; that is  the solution to (5.34) in term of the solution to (5 32) 

is given by (5.43). 

w(t) = 3(t) + exp ( & t) A W(O) 

A 
where w .= vv = u, 

n . n  



A 
e =  y - y  

The (c, 9 are estimates of (a, b). The ( 8  , Y , A )  ore daign pommkn. 

FIGURE 5.5.3: THE PARAMETER AND STATE ESTIMATOR 
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Clearly i f  A, > 0, then the influence of any initial estimate error (AW(O)\ 0) wi l l  
decay to zerb as t, ---+ OD . 

A 
skailorl y the solution tof5.55) in t e r n  of the vector 3 - ' Gir . . . Vn-, , Y) is: 

A 
v (+I = (t) + exp [a (t)] A ~ ( 0 )  - 

Using equations (5.43) and (5 .4)  in (5  3 9 )  results in 

A T  A = - (aT - a ) - aT exp (&t) Av(0) 

- A,. + (bT - bT) - + bT e x  ( A C t A w(O) 

when 1 r 
o = (a,, ..., an); 

bl' C ( . l ,  ;.., bn). 

Now select a Lypunov function - 



1 

m BIIEIAlC cowrurr ! 
the *atlonay system assumption (4 = b 0) *. have: 5 

f 
I 

" 
(big$) " ('1-4) + 

. 
G r;+C 

gi 
L i  (5.47) 

I I 

1 1 - 

insrting the "steepest &scenta parameter adjustment Im, Eq. 5.40 and 5.4i, haw: 

n 
A h 1 

A A 
G = $ + e  C (a.-ai) t v i - e  (h I - b? wi 

1 1 .  

A A  
= e c + e $ - g T )  - e ( b - b )  r - 

SubStitute Eq. (5.45) into (5.48) results in 

(5,49) 

&call thot the autonomous or "unforced solution to (5 34) and (5.35) is: 

T T GA + An Y*) = -a exp (& t) v(0) + b exp ( A t )  - w(O) (5.50) 

- - 
Clearly (iA + A y ) .--r 0 as t - cm if the system to be identikd is 

n A 
stable; i.e. strictly LHP poles. Hence for a stable system (5.49) becomes mgative - 
&finib, hen foe parama ter and stoh est ima" convergence b guaranteed. 

implicit in above .ha requirement that h e  input u contain at least ndhtinct 

frequencies (real or complex) I221. 

Convergence Proof for Non-S tationary Syskms 

It is imtwctive to consider the non-ltatiomry state and parameter estimation con- 

mrgenp. The* cons;demtionr yield guidelines in initial design parameter selection. 

120 
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2 T + =  - h n e  + e  [+Texp ( * t )  Av(O)+b exp ( e t )  AW(O)] 
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Carider the time derivative of Equation 5 . 4  with d # 0 and 6 \ 0 .  Carrying 

cut steps ana!ogous to those nwlf ing in Equation 5.49 rewlh in Quation 5.51. 

Equation 5 3 1  indicates that maximum ( A ,  6 ,  Y )  are desimble for maximum state and 

parmeter estimate convergence ratc . A set of large Ai > 0 provides for I;! state 

estimt~on convergence. A set of large ( 8 . Y )  accelemtes me "steepest descent" 

parwnekr odjushent law. 

A 1 bitatim an pammekr estimatc mte i s  presented by the frequencies of  the system 

to be identified. To see how h i s  comes abour, comider the highest natural fnquency 

associated w i h  parameter ai. This natural mode determines h e  rate ofchange of 

v. a which in turn govern the "observobility" or any error in estimate and hence 
I i' 

rrmoval of the error. 

In conclusion the pmcticd upper bound on (6,~) > 0 is dichted by the unknown 

sFtem mturd frequenci+s. The maximum f A )  is dictated by various numerical con- 

ditioning considemtiom . 

Conclusion 

It has been shown hat  b r  any input u, h e  adaptive observer described by 

Quatiom 5.38, 5.40, 5.41, 5.42 will asymptotically yield the states and pammehn 

of'an nL order linear time-inwrimt system Im. This adaptive observer does not 

qu i re  auxiliary signals to be bd back into i t  [PI, ond hence i ts  implementation is 

wry simple (see Figure 5.5 .3). 



5.6 Qwsiddaptive Control Systems 
'. , 

Mort of  the adaptive control techniques discussed to date are still in the research s tap 

and present a high lechnical risk. Therefore, it i s  necessaw to consider proven quasi- 
l 

adaptive syskms for a space shuttle type application. The quasi-odaptive scheme to 

be discussed has been applied wccesshlly by Boeing on the U.S. Air Force SRAM 

missile. This i s  an aerodynamically controlled missile that operates over a dynamic 

pressure range of 240 to 1 inch. The static stability of t h i s  missile expressed in terms 

of fins unlocked natural frequency ranges from 14 rad/sec unstable to 10 rad/sec stable. 

The structural modes also limitsd the design of he stabilization compensation for the 

missile. 

The basic autopilot was an attitude type similar to the system on shuttle. The missile 

is guided by an onboard inertial measurement unit so that knowledge of  the current 

flight condition i s  available. The guidance system provides an attitude error signal 

to the flight control system. 

The flight ccntrol system design mode use of the aforementioned attitude error signals, 

along with rate gyros in al l  hree axes, forming an essentially conventional attitude 

control system configuration. Control fins were operated by proportional hydraul ic 

position servos. The system was unconventional in that dynornic compensation networks 

were designed with four selectable sets of characteristics to accommodate the wide 

range of flight conditions. Network selection was determined on the basis of on- 

board computed dynamic pressure, obtained from inertially sensed total velocity and 

altitude. The compensation network design required careful optimization to minimize 

the number of networks required, within the constraints of missile static stability and 

structural bending coupling. This network optimization was accompl ished through 1 

trade studies of gain and phase margins vs. compensation network parameters. 

This design approach is amenable to well establ ished analysis and simulation tech- 
I 

nques, permitting a thorough understanding and evaluation of the system prior to 

commitment to actual flight test. The basic stabil tat ion design was accomplished 
I 

using root locus and Nichols chart linearized stability analysis techniques. Simulations, I 
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digital, analog, a d  hybrid, were used to evaluate nonlinear system characteristics, 

such as arodynamics and fin actuator behavior, The contl-ol system has demonstrated 

uqual ified success, performing i ts  intended mission w ithout significant modification 

since the start of flight testing in 1969. 

System Description 

The flight control system b l a k  diagram b r  this missile i s  shown in Figure 5.6.1. The 

mL i le  digital computer i s  seen to be the brains of this system selecting the rigid mode 

and body bending mode filters. The four rigid mode f i l l e~ ,  ore cL;oren based upon 

dynank pressure while the two body bending filters are selected based upon moment 

o f  inertia data. 

Right control gains w e n  computed onbmrd based or1 inertial l y m a u  red informat ion, 

along with programmed repeentations of conhnl fin eflectiveness and missile moment 

o f  inertia. The cmtrol gain computation olrd network selection logic are shown in 

Figure 5.6.2. 

The onboad determination of fl ight control gains and select ion of compensation 

networks as functions of missile~easured fl ight condition constituted u quasi-adaptive 

mode of operation. The system adjusted itself according to rneas~lred flight condition, 

but not through a dynamic mode of closed-loop sensing in the w a l  sense associated 

with adaptive control. This is a significani advantage when there is  a severaly eon- 

straining closeness between the frequency regime of  rigid body control and that of 

structural body bending, at was the case with SRAM, 

The high degree of  success of the design approach used on SRAM merits consideration 

of this concept on other apflications. I t  i s  especially amenable to any system that 

qu i res  an onboard digital computer to perform the guidance and navigation tasks. 

7h. computer's bnctiom can then be expanded to provide computatioml services for 

the flight control stobil ization !ask, using the basic infomtion that i s  generated or 

part of the inertial guidance function. The use of variable compensation chamcterltics 

and fl iOht c o n t ~ l  goins bavd on inertial1 semed fl ight condition i s  not restricted to 

an attitude controller; it is conceptually applicable to normal acceleration control 

systems, or to any technique used to augment stability or derive stability for a 

statically unsbble or marginally stable vehicle. 

1 23 
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This quai-adaptive design approach i s  applicable to any vehicle with widely varying 

flightregimes. Therefore, adesign similar to this could be applied to the shuttle . 
vehicle. 

While :n the mixed reac tion-iet/aerodynamic and total I y aerodynamic modes the fil ten . , 

could be switched a a function o f  dynamic pressure, the loop gains could be changed 

as a function of fin effectiveness and the mixing of  control modes could be performed .. 

as a function of dynamic pressure. 

5.7 Digitizing Adaptive Control Systems 

The previous discussions haw not considered methods of  choosing sampling rates for the 

adaptive control system. Two methods of converting parameter adaptive control systems 

in to mu1 tirate designs wil l  now be discussed. The first involves using the identified 

parameters to determine the dominant response modes of the system. It i s  precisely 

these modes which dictate the sampling rate requirements from a frequency folding 

effects standpoint. Since the folding efk.c+s usually place a higher requirement on 

sampl ing rate than stabil i ty  considerations, this technique could be used i f analysis 

verified that this was in fact the case. The second involves adapting the sampling 

rate to meet the time ~arying control system requirements. Assuming that the control 

system was functionally dependent on time varying parameten, a digital implementation 

could require difkrent time varying sampling rates on the various control loops, From 

I 
t strictly a digital real ization standpoint the sampl ing rate could become a function of 

the time varying filter break fnquencies e .go as > N a - where is the 
max 

highest filter break frequency. Care would have to be exercised in blindly applying 

this technique especially if thc h igh fiquency behavior of signals being sampled was 

unknown. This situation could be alleviated by analog prefilters on specific signals. 

I 4 possible implementation might involve using both of these methods. 



APPENDIX A 

THE SWITCH DECOMPOSITION METHOD OF ANALYZING 
MULTIRATE SAMPLED DATA CONTROL SYSTEMS 

It is i l l ush t i ve  to work a sample problem using both the original switch decomposition 

method of  Kranc [ I l land the updated version using the vector operation signal flow 

technique. First let us find the system transfer iurictiqn shcvrn in  Figure A-1 

using Kranc's original method. 

FIGURE A-1 

KRANC'S ORlG INAL SWITCH DECOMPOSITION METHOD 

The sptem i n  Figure A-1 is  redrawn replacing the T/? sampler by the equivalent 

parallel combination o f  samplers sampling at rate T. The equivalent system is  shown 

in Figure A-2. 

FIGURE A-2 
EQUIVALENT SYSTEM IN BLOCK DIAGRAM FORM 
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~h. loop quation$ necessary to find thr !ransfer function a n  written in  terms of the 

unknowns B1(3 and B2(s) and the output quantity C(s). They a n  
i 

-sT/2 

0 s )  = ( R *  - ( )  B - ( )  B2(s) - (+) c * ~  (A-1) I 
I 

The Laplace transform of each sampler output i s  obtained from (A-1). (A-2) and (A-3). I 
They are 

f 
3 T * 1 T 

* = ( )  * * - ( )  B1 c * ~  ( A 4 1  , 
1 

I 
B2* 

 ST/^ * T 
1 T 

B ~ * ~ - ( )  $ 2 * T ( A - 6 ) '  

Rearranging and taking the Z-tmttsf~m yields 

Z(1 + 1/s) Bl (2) + Z112 (l/s) B2 (z) + Z (1/s) C(Z) = Z(l/s) R(z) (A-7) 

where 
ST 

z = e , Z ((s)) = F(z) and ZlI2 (44) = F(z, 1/2) 
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Applying Cramer's rule to Equations (7), (8), and (9) the transfer function c(z) 

as a ratio o f  two determinants. 
w 

Expanding each determinate ;long the f in t  column allows C(z)/R(z) to be written as 

a ratio o f  two polynomials. 

Each o f  the terms in the numerator and denominator o f  C(z)/R(z) can be converted 

to fbnctions of z by consul ting a table o f  z and modified z transform pain, 

Vector Operation Signal Flow Graph Technique 

Using the vector operation signal flow graph technique the flow graph for the system 

shown in  Figure A-1 can be drawn. f he flow graph i s  presented in Figure A-3. 



FIGURE A-3 
R)UNALEM SYSTEM IN SIGNAL FLOW FORM 

The equations for each output node immediately follow f ror  Figure A-3. 

where EN' i s  the column vector d advancei with components E. N + = e  
ST ti-1)/N 

t 
I e 

i = 1, 2, ..., N and EN- .- i s  the row vector of delays with components 
N- -ST (i-1)/N 

E. = e , i = I ,  2, ..., N. 
I 

The Laplace transform of each output node, after sampling, i s  given by Eq3atiom (A-1 5)  

I and (A-1 6). 

If we shorten our nctation by defining 
- 
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when the prime (A-1) indicates tho tmnpose, (A-15) and (A-14 combine to form the 

kl lowing matrix input-output tronsCr function. 

Using the identities developed by b y k i n  and Frrpier II21 C(z;iR(z) can easily be 

, converted to a ratio of polynomials. The identities, which are used to break to vwn 
N+ vector/mohix relationships of h e  brm E G, G EN', and E ~ '  G E ~ -  intc scalar - - - - 

equations are listed in Equations (4-2Q through &-23). 

where w = e 
i 2n,'/N ST , z = e  , zN = e  

ST/N 
P 

X, Y and R are scalar functions in z w 
P P 



Toexpand 6-19) into a ratio of let G = l/s and H = l/s+l and note 

that 
N - 1  

Expand irg D -' (z) 

Using Equations (A-21), (4-22) and (A-23 



Subtracting expression 44-27) from 19-28) yields the numerator of the input-outpui 

tmns b r func t ion 

Thee fore 

The expression is val id for any positive tnkger N. Fw our example N 2 and 

Equation (A-30) reduces to 

Z (GH) + Z(G) Z(GH) - z Z1/2 (G) z1/2 (GH) 

I + 2Z(G) + Z(G) Z(G) - z Z (G) Z (GI + Z (GH) + Z(G) Z(GH) 

If l/s is substituted for G and 1/s + 1 for H Equation (A-31) is  equal to Equation 

6-13, the answer which was obtained using Kronc's o, iginal switch &composition 

method. 



Both Kranc's switch decomposition method and the vector operation signal flow 

technique have inherent advantages and disadvantages. Kranc's origiml method 

is s t ra~ht  fornard but becomes cumbrrome as the complexity of the system increases. 

The vector operation signal flow gmph technique has the advantage of all, .wing the 

governing loq, quations to be easily written down by inspection of the flow graph. 

The resulting vector/matrix equations however can become hard to deal with even 

though the i&ntitSks and relationships introduced by Boykin ond Frazier [I21 maker 

this task somewhat easier. 



APPENDIX B 

RELATING (a 8 ) TO (08. b) 

&ample of the re ld imhip between (a, 0) tmd (ar b) of Equations (5.32) and (5.33) 

Multiplying both numerutor m d  denominator of Equation (I)-1) by (s + A 2  (s +AZ)(s + A,) 
results in a ratio of polynomials of the form of Equation (B-2). Comparing caeificients 

of like powers of "s'  results in the following transformations. 

Note that the triangular fonn simplifies inversi0~1. 
135 
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